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Abstract—Since its inception, blockchain technology has found
wide-ranging applications in various fields including agriculture,
energy, and so on, owing to its immutable and decentralized
nature. However, existing blockchains encounter significant chal-
lenges in scenarios that demand efficient retrieval of big data.
This is primarily because current blockchains cannot directly
store and process diverse types of rich media information.
Additionally, the semantic relationships between data within
the blockchains are weak, complicating the categorization and
retrieval of data and transactions. Moreover, the scalability of
current blockchains is limited, with the capacity of full nodes
continually increasing. Although some semantic-based blockchain
solutions that combine off-chain scalability have been proposed,
they are limited in effectiveness and applications. To address these
issues, this paper introduces a brand-new blockchain sharding
technique called Semantic Sharding, which enhances blockchain
scalability through a hybrid on/off-chain approach. Building on
this, we propose a semantic sharding blockchain architecture,
SemantiChain, which enables the on-chain storage and retrieval of
transaction semantic features. Furthermore, through the Po2RW
consensus protocol, we balance the scalability and security of
SemantiChain. Security analysis proves that SemantiChain can
resist security risks such as man-in-the-middle attacks, malicious
node attacks and on/off-chain data inconsistency. Experimental
results demonstrate that SemantiChain can reduce search time
and memory usage by at least 32.29% and 77.97% respectively
under the same retrieval performance, compared to mainstream
approximate nearest neighbour retrieval algorithms. Further-
more, compared to the SOTA semantic blockchain, SemantiChain
achieves a retrieval performance improvement of at least 45.88%
and reduces retrieval memory usage by 95.76%.

Index Terms—Semantic Sharding, Blockchain, Information
Retrieval, Scalability.

I. INTRODUCTION

IN the era of big data, researchers widely use various types
of data for scientific research. To obtain reliable research

results, the reliability of the data is their primary concern.
At the same time, the storage architecture needs to be able
to withstand the risk of central server downtime and data
loss. Nowadays, blockchain, due to its characteristics of data
immutability and decentralization, has successfully overcome
these issues and has been widely applied in fields such as
agriculture [1]–[3], energy [4]–[7], and supply chains [8], [9].
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However, as a trustworthy database, the data types stored in
the blockchain are quite limited. In agricultural scenarios, the
blockchain stores key geographical and temporal information
about agricultural products from planting to sales in the form
of text. Since the average block size of common blockchains is
only 20KB to 2MB [10], for rich media such as images, audio,
and video, the blockchain can only store them indirectly in the
form of hyperlinks or textual identifiers [11]. This means that
when farmers and experts need on/off-chain data for analysis
and supervision of cultivation and sales processes, additional
alignment operations must be performed first.

Meanwhile, after the data is packed into blocks in the form
of transactions, these blocks are merely linked in chronological
order in the blockchain, resulting in a very weak semantic
relationship between transactions. To retrieve a specific type
of transaction and its data, one always has to traverse the
entire blockchain from the latest block. For Bitcoin and
Ethereum, with current block counts exceeding 852K1 and
20M2 respectively, the cost of such traversal is extremely high.

While there are already some solutions that propose com-
bining semantic features with blockchain to construct retrieval
indexes, certain issues still persist. By modeling blockchain as
a relational database [12], the semantic relationships between
data are defined in terms of attributes, but this definition
heavily relies on personal experience. On the other hand, using
statistical methods like TF-IDF to extract semantics and build
indexes [13] partially addresses the problem of defining data
semantics, but these methods are often limited to text data and
overlook the multiple meanings of words in different contexts.
At the scale of big data, retrieval performance is constrained
by these semantic representation defects.

On the other hand, due to the constraints of the consensus
process, blockchain can only sacrifice its scalability in pursuit
of security and decentralization. For example, for Bitcoin
and Ethereum, their throughput can only reach 10 and 30
transactions per second [14]. This restricts the application of
blockchain in high-throughput scenarios. Moreover, due to the
immutability of data in the blockchain, continuously growing
data increases the storage load of the full node gradually.

The existing solutions mainly enhance the scalability of the
blockchain through on/off-chain methods. Off-chain methods
do not essentially optimize the blockchain itself, while on-
chain methods, especially the state sharding technology, have
received widespread attention [15]. It divides the state informa-
tion of the blockchain into multiple parallel sub-consensus ar-
eas, enhancing the scalability of the blockchain while reducing
the storage of state information for full nodes. However, due

1https://btc.com/btc/blocks
2https://etherscan.io/blocks



2

to the division of the sub-consensus area, the nodes are also
divided into different consensus areas, and malicious nodes
can aggregate and control the blockchain at a smaller cost.
Therefore, it is necessary to build a reconfiguration strategy to
periodically reassign nodes [16]. Although reconfiguration can
enhance the security of the blockchain, it will also affect its
efficiency. Current solutions often struggle to strike a balance
between security and scalability.

According to the above analysis, we can conclude that
the current blockchain faces the following key challenges in
adapting to application scenarios that require accurate and
efficient information retrieval:

1) Traditional blockchains cannot store various types of
rich media, making it challenging to directly utilize data
such as audio, images, and video.

2) The semantic relationships between transactions and
data within the blockchain are very weak, making sim-
ilar transactions and data hard to retrieve.

3) The existing methods involving semantic relationships
and blockchain lead to inaccurate semantic representa-
tion of data.

4) The scalability bottleneck of blockchain limits its effi-
ciency, and the increasing capacity of full nodes leads
to high storage costs.

5) Blockchain sharding technology makes it difficult to
strike a balance between security and scalability.

To tackle these challenges, we present in this paper a
brand-new blockchain architecture called SemantiChain. It
is a Semantic Sharding Blockchain that supports Semantic
Information Retrieval. Furthermore, it enhances the security
and scalability of the blockchain through specially designed
consensus protocols and reconfiguration strategies. Our con-
tributions can be summarized as follows:

• To enhance the semantic representation of data and im-
prove the scalability of blockchain, we proposed, for the
first time, a novel blockchain sharding technology called
Semantic Sharding. This technology stores transactions
in the form of semantic features and allocates them to
different shards for parallel consensus based on semantic
distance. Additionally, to liberate blockchain data storage
from specific types, we implemented the Semantic Shard-
ing Blockchain (SSB) based on Semantic Sharding, using
structures like the Semantic Tree.

• To achieve a balance between security and scalability
in blockchain, we designed a novel consensus protocol,
Proof of 2-Role Work (Po2RW), which ensures both secu-
rity and scalability in sharding blockchain by integrating
reconfiguration strategies.

• For efficient retrieval of big data, we proposed a
novel distributed Semantic Information Retrieval (SIR)
structure tailored specifically for semantic sharding
blockchain. Additionally, we have introduced an approxi-
mate nearest neighbour (ANN) retrieval algorithm aimed
at reducing the time and space costs of retrieval, leverag-
ing modules such as Distribution Product Quantization
(DPQ) and Coarse Filter.

• The security analysis of SemantiChain demonstrates its

TABLE I
RELATED WORK ON BLOCKCHAIN DATABASE

Catalogy Method Data
Representation

Scalable
Technology

Transaction
Retrieve

Blockchian
System

Bitcoin [17] Attributes \ Backtracking

Ethereum [18] Attributes,
Smart Contracts Transaction Sharding Backtracking

BigchainDB [19] Attribute,
File Identifier Off-chain Database MongoDB

Distributed
Database IPFS [20] File Identifier \ \

Blockchian
Database

SEBDB [12] Attributes Off-chain Database SQL

MSTDB [13] Text Keywords Off-chain Database Multi-branch Tree

SemantiChain Semantic Feature Semantic Sharding,
Off-chain Database Distributed ANN

effective resistance to man-in-the-middle attacks, mali-
cious node attacks, and on/off-chain data inconsistency.
Experimental results show that, compared to mainstream
ANN retrieval algorithms, SemantiChain reduces memory
usage by 77.97% and search time by 32.29% at the very
least under the same performance metrics. In comparison
to state-of-the-art blockchains, SemantiChain increases
retrieval performance by at least 45.88% and reduces
retrieval memory usage by 95.76%.

The rest of this paper is organized as follows. Section II
introduces the relevant work on blockchain databases and
sharding blockchains. Section III presents the basic architec-
ture of SemantiChain. Section IV details the semantic sharding
technique, the Po2RW protocol, and the implementation of the
SSB. Section V provides a detailed explanation of the SIR.
In Section VI, the security analysis of SemantiChain is con-
ducted. The experimental results and analysis of SemantiChain
are presented in Section VII. Finally, Section VIII concludes
this paper and outlines our future work.

II. RELATED WORKS

A. Blockchian Database

Due to the immutability of data in blockchain, blockchain
is commonly regarded as a trusted distributed database. In
2009, Satoshi Nakamoto introduced Bitcoin [17], marking
the beginning of blockchain applications. However, Bitcoin
is limited to storing structured data related to transactions. To
expand its application scope, Ethereum [18] was proposed,
which not only stores transaction-related structured data but
also allows developers to deploy decentralized applications
through smart contracts. However, these solutions struggle
with fast retrieval of on-chain transactions. To address the need
for data storage and retrieval, new blockchain technologies
like BigchainDB [19] were introduced. They tokenize stored
data assets through transactions, utilizing file identifiers to
link original data in off-chain databases, enabling storage and
retrieval of various abstract and entity objects. Similarly, IPFS
[20] as a distributed database offers content-addressed storage,
storing diverse media data via file identifiers. However, these
methods lack semantic representation of data content, making
retrieval based on content correlation challenging. To tackle
these issues, the concept of blockchain databases has evolved.
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TABLE II
RELATED WORK ON SHARDING BLOCKCHAIN

Catalogy Method Reconfigure Consensus
Protocol

Cross-shard
Tx Atomicity

Sharding
Number

Transaction
Sharding

RSCoin [21] \ BFT \ Fixed

ELASTICO [22] Random BFT No Dynamic

State
Sharding

OmniLedger [23] Random BFT Yes Dynamic

Monoxide [24] \ PoW Yes Fixed

Brokerchain [25] Graph BFT Yes Fixed
Semantic
Sharding SemantiChain Shard Activity PoW Yes Dynamic

SEBDB [12], a relational blockchain database, allows users
to define tables based on object attributes and use SQL
queries to retrieve information. However, this attribute-based
indexing heavily relies on personal experience. MSTDB [13]
integrates semantic features with blockchain, using TFIDF to
extract text keywords for data semantic representation and
employing MST-B+ Tree for indexing. Despite overcoming
human limitations, this approach is only suitable for textual
data and requires re-indexing for other media types.

Therefore, as shown in Table I, for improving blockchain
databases, SemantiChain aims not only to store various media
data but also to enable content-based retrieval. Moreover, en-
suring storage efficiency through on-chain/off-chain scalability
technologies is crucial.

B. Sharding Blockchain

Sharding technology is one of the primary means to address
the scalability of blockchain. Depending on the divided enti-
ties, sharding is categorized into network sharding, transaction
sharding, and state sharding. Network sharding serves as the
foundation for other sharding technologies. In 2015, RSCoin
[21] introduced sharding into decentralized architectures simi-
lar to blockchain, enhancing transaction processing efficiency.
That same year, addressing blockchain scalability issues, the
transaction sharding-based architecture ELASTICO [22] was
proposed. It disperses transaction loads across multiple sets for
parallel consensus, improving blockchain scalability. However,
due to its lack of consideration for atomicity in cross-shard
transactions, OmniLedger [23] implemented a state sharding-
based blockchain architecture. It divides blockchain states into
different shards and ensures atomicity of cross-shard transac-
tions through two-phase consensus. However, such solutions
based on BFT-like consensus protocols are challenging to ap-
ply to permissionless chains. Monoxide [24], as a state-of-the-
art architecture based on state sharding and PoW consensus
protocol, balances decentralization, security, and scalability
through finality and Chu-ko-nu mining. However, Monoxide’s
oversight on transaction load balancing leads to potential
hot shard issues. To address this, Brokerchain [25], a state
sharding blockchain architecture, uses graph policies to reduce
cross-shard transactions and dynamically adjusts shard nodes.
Nevertheless, these state sharding solutions fix the number
of shards as a hyperparameter, making dynamic optimization
difficult in changing environments.

Previous approaches have driven the development of
blockchain sharding technology. However, as shown in Table
II, these solutions still do not apply well to dynamic sharding
architectures in permissionless chains. Traditional sharding
technologies primarily focus on transactions between nodes,
limiting their ability to optimize data storage and retrieval
through data semantics in data storage applications. Therefore,
this paper proposes semantic sharding technology based on
state sharding.

III. SYSTEM MODEL

In this section, we present the architecture of SemantiChain.
It is built upon the SSB, a blockchain architecture based on
semantic sharding, and it uses Natural Language Processing
techniques to extract semantic features from metadata. Seman-
tiChain stores metadata off-chain and saves semantic features
in the form of transactions on-chain, collectively improving
the scalability of the blockchain through on-chain and off-
chain mechanisms. Simultaneously, SemantiChain compresses
semantic features and builds an index through the SIR frame-
work, reducing the time and space costs of retrieval.

A. Architecture Overview

1) Member and Node Types: from a semantic perspec-
tive, there exist two types of users in SemantiChain, namely
data owners and queriers. From the standpoint of blockchain
consensus and reconfiguration, SemantiChain is composed of
semantic nodes, relay nodes, and shard nodes.

• Data Owners: Data owners are data semantic nodes
holding off-chain metadata. They can upload and update
the semantic features of the metadata to the blockchain
through transactions.

• Data Queriers: Data queriers are user nodes that wish to
obtain verified correct query results and metadata. They
can be any type of node in the blockchain network.

• Semantic Nodes: Semantic nodes (S-Nodes) are the basic
units for transactions and consensus in SemantiChain,
exchanging information through P2P networks. Based
on whether they possess metadata, semantic nodes are
further divided into data semantic nodes (DS-Nodes) and
ordinary semantic nodes (OS-Nodes).

• Relay Nodes: Relay nodes (R-Nodes) essentially acts as
a semantic node. In SemantiChain, R-Nodes participate
in multiple shards simultaneously, possessing semantic
feature information from various shards to facilitate cross-
shard transactions and message forwarding.

• Committee Nodes: To avoid malicious node clustering
and reduce cross-shard transaction occurrences, all com-
mittee nodes (C-Nodes) will form a committee shard (C-
Shard) to manage and reconfigure the blockchain. C-
Nodes will communicate with all other shards by P2P.

2) Basic Concepts and Definitions: Given SemantiChain’s
uniqueness, we offer new definitions for some fundamental
concepts in the blockchain.

• Toolkit: The toolkit will be distributed to each node,
consisting of (1) Coarse Filter, a tool for filtering the
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corpus range, which also serves as a selector for classi-
fying transactions, and (2) Embedding Tool, which is the
semantic representation model to extract semantic fea-
tures from metadata such as text and images as semantic
features. Only semantic features can be processed as data
by SemantiChain.

• Block: In general, in SemantiChain, each block corre-
sponds to a semantic feature of the metadata. However,
due to the input token limit of embedded tools, when the
metadata is too long, it will be segmented for semantic
extraction. At this point, each segment of semantic feature
will form multiple independent consensus transactions on
the blockchain. A block at this time corresponds to a
partial semantic feature of the metadata.

• Transaction Legitimacy: For SemantiChain, as there’s
no concept of balance, transaction legitimacy primarily
occurs through verifying whether the current transaction’s
Dataid already exists in the Semantic Transaction Tree. If
the Dataid exists, it’s necessary to judge whether the data
owner’s address in Semantic Transaction Tree conflicts
with the address of transaction creation node.

B. Execution Process

The data stored in SemantiChain needs to be uploaded
or updated by DS-Node in the form of transactions. When
other nodes need to obtain metadata, they can construct query
statements to retrieve and obtain it from the SemantiChain.

• Upload and Update Process: (1) The data owner first
obtains the unique identity of the data by performing a
HASH digest on the local metadata, resulting in Dataid.
(2) The data owner extracts the semantic feature v
from the metadata using the embedding tool. (3) The
corresponding DS-Node broadcasts the message body
M < Type, Tid, AddrA, Dataid, v > in the form of
a transaction to the shard, where Type represents the
message type, Tid is the unique identity of the transaction,
and AddrA is the address of the DS-Node. (4) Other
semantic nodes within the shard determine whether the
transaction is a cross-shard transaction using their local
Coarse Filter. If it is an intra-shard transaction, it is
directly verified and packaged onto the chain. If it is a
cross-shard transaction, it is verified and then relayed by
the relay node to the corresponding shard, where it is
verified by the corresponding shard’s semantic nodes and
packaged onto the chain. (5) The Coarse Filter is updated
at the next epoch.

• Query Process: (1) After the data querier sends a query
request, the query content Q is first used to extract the
semantic feature vq using the embedding tool. Then, the
local Coarse Filter is used to calculate the n nearest
shards in terms of semantic distance for vq . (2) The data
querier’s node broadcasts the message in the shard in
the format of MQ< Type, IRid, Addrq, n, topk, vq >,
and relays the query message through the relay node and
the shard node. Here, IRid represents the retrieval ID,
Addrq represents the node address of the data querier,
and topk represents the topk query results. (3) Through

parallel searches by the semantic nodes within each shard,
the top-k retrieval results Oni

topk
< Dataid,∆, Addro >

are returned to the data querier, where ∆ represents the
semantic similarity of the query results, ni represents
the index of the semantic node in the reply, Addro
represents the node address of the corresponding data
owner. (4) The data querier aggregates all Oni

topk
to obtain

the topk results, and obtains metadata in P2P networks
using Dataid as the file index.

C. System Design Objectives

The SemantiChain is mainly composed of the Semantic
Sharding Blockchain architecture (SSB) and the Semantic
Information Retrieval architecture (SIR). The security and
scalability of its underlying blockchain architecture are the
primary objectives.

• Security: It refers to the ability of blockchain to pro-
tect data from tampering, prevent attacks, and maintain
stability.

• Scalability: It refers to the ability of blockchain to ef-
fectively improve throughput and processing speed while
maintaining system performance and stability.

In semantic retrieval, it is essential to ensure the correctness,
completeness, and orderliness of the retrieval results, while
also controlling the time and space costs of retrieval.

• Correctness: Whether the expected retrieval results are
returned;

• Completeness: Whether all retrieval results are returned;
• Orderliness: Whether more high-quality query results are

returned in the retrieval results;
• Time Overhead: Retrieval response time and the time

cost of building indexes;
• Space Overhead: Storage overhead of the retrieval index

structure.

IV. THE IMPLEMENTATION OF SEMANTIC SHARDING
BLOCKCHAIN

This section primarily discusses the basic processes of
the Semantic Shard Blockchain Architecture (SSB), which
is inspired by MSTDB and based on our previous work
DSSBD [26]. MSTDB is a recently proposed statistical-based
blockchain semantic retrieval and storage solution. It uses
TFIDF to extract keywords from on-chain data as semantic
features, achieving an efficient blockchain database. This
has inspired our research on the storage and retrieval of
blockchain with semantic features. And DSSBD is a state
sharding blockchain architecture, with the working cycle based
on epochs. The workflow within each epoch is divided into
a Blockchain Consensus stage and a Node Reconfiguration
stage. It enhances scalability through parallel consensus and
transaction relay, increases security by preventing the ag-
gregation of malicious nodes through committee sharding,
and models it as a Markov model to balance scalability and
security through deep reinforcement learning.

Built on DSSBD, SSB also uses the epoch as its working
cycle. However, as each block in SSB contains only one
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C-Block

Sharding Stage

Consensus Stage

Semantic
Shard

Semantic Shard Semantic
Shard

S-Node
R-Node
C-Node
Intra-shard Transaction
Cross-shard Transaction
Moving

C-Shard

Transactions with Semantic Features

Fig. 1. The main execution stages and architecture of SSB

transaction, its workflow includes multiple alternating consen-
sus and sharding stages. Since semantic features support data
retrieval at a large data scale, in order to integrate semantic
features, SSB enhances execution strategies, modifies data
structures, and balances scalability and security through a new
consensus protocol, realizing a blockchain architecture that
uses semantic features as the basis for sharding.

As shown in Figure 1, within the Consensus Stage, multiple
consensus blocks are formed within each shard. Simultane-
ously, C-Nodes of C-Shard connect to the subnets of each
shard through a P2P network, listening to transactions of the
longest valid chain in each shard. C-Nodes split and merge
shards based on sharding strategies and reassign node’s shard
membership according to reconfiguration strategies and the
results of reconfiguration. Consensus blocks, C-Blocks, are
then formed in C-Shard based on the results and broadcasted
to all nodes.

During the Sharding Stage, each shard merges and splits
based on C-Blocks. Blockchain nodes enter new shards based
on C-Blocks and reconstruct the sub-databases and indexes
within the current shard based on the consensus blocks.

A. Strategy for Sharding Stage

1) Initial Sharding Strategy: To prevent Sybil attacks [27],
any new node joining the SSB needs to solve a hash puzzle
to calculate its index for joining the shard. Once a node has
joined the shard, data synchronization is carried out through
the P2P network.

For the corpus, as shown in Figure 2, the Coarse Filter
initially divides the current corpus into k semantically distinct
sub-corpora Ck, which correspond to K semantic shards Sk.
To accelerate retrieval speed, the semantic features in Ck are
divided into Lk invert file lists ξk,l, also known as ivflist.

𝜉𝑘1,𝑙0

𝜉𝑘2,𝑙0

𝜉𝑘4,𝑙0

𝜉𝑘2,𝑙1

𝜉𝑘3,𝑙1

𝜉𝑘0,𝑙0

Inverted File List 𝑘,𝑙

Sub-corpus ℂ𝑘

ℂ1

Semantic Features

Centroids of Ivflists

𝜉𝑘3,𝑙0

Centroids of Shards

Semantic Distance

𝜉𝑘3,𝑙2

ℂ4

ℂ3

ℂ0𝜉𝑘1,𝑙1

ℂ2

Fig. 2. Strategies for the Splitting and Merging of Semantic Shards

During retrieval, an ivflist ξk,l is selected in the form of
key-value pair < k, ξk,l >, and then traversed to obtain the
retrieval results. Therefore, the value of k is generally several
orders of magnitude lower than l. In the initial state, the current
corpus is directly clustered and divided.

2) Corpus Sharding Strategy: In the SSB, semantic shards
are arranged based on semantic distance, with shard activity
serving as the criterion for shard splitting and merging. The
activity of semantic shards is reflected through the sub-
throughput τk and the number of semantic features εk in each
shard. The SSB dynamically splits and merges the corpus
using C-Shard and Coarse Filter. Based on shard activity, we
define the basic concepts of active shards and dormant shards
as follows.

• Active Shard: In each epoch, if the sub-throughput of
a semantic shard τk > τmax × ηupper or the number of
semantic features εk > ε × ηmax, where τmax is the
theoretical maximum throughput of each shard in the
current epoch, ε is the current corpus data quantity, and
ηupper and ηmax are known as the splitting factor and
overload factor, it indicates that the semantic shard has
a high frequency of legitimate transactions in the current
epoch, or the Ck of this shard contains a large amount
of corpus data. Such semantic shards are referred to as
active shards.

• Silent Shard: In each epoch, if the sub-throughput of
a semantic shard τK < τmax × ηlower, where ηlower

is referred to as the merging factor, it indicates that the
frequency of transactions in the shard has become slow,
and the shard is no longer sufficiently active.

Specifically, the values of τmax and ε are calculated and
statistically determined based on consensus results. τmax =

ntx

K×T epoch
, where ntx is the theoretical maximum number of

transactions in this epoch. Since each block in SSB only
records one transaction, ntx is equivalent to the theoretical
maximum number of blocks produced in this epoch, that is, the
number of blocks produced that each shard can continuously
reach consensus within the epoch; K is the number of shards
in this epoch, and Tepoch is the execution time of this epoch.
ηupper, ηlower, and ηmax are adjustable hyperparameters,
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with values ranging from 0 to 1. If frequent shard splitting
or merging occurs during an epoch due to excessively high
or low transaction throughput, ηupper should be increased
or ηlower should be decreased accordingly to reduce the
corresponding operations. If frequent shard splitting occurs
due to uneven data distribution, ηmax should be appropriately
increased to improve the shards’ tolerance to the degree of
uneven distribution.

As shown in Figure 1, at the end of each round of the
consensus stage, C-Shard obtains information about active or
dormant shards. Based on this, it generates a committee block,
C-Block, to guide the shard stage of the current round.

If a shard becomes an active shard, it needs to be split into
two new semantic shards based on semantic similarity during
the shard stage. The transactions within the original shard and
the cached transactions in the corpus transaction pool will be
allocated to the new shards based on semantic similarity, and
the Coarse Filter will be updated. C-Shard forms a consensus
result, C-Block, for the shards that need to be split during the
consensus stage. The C-Block links the blocks in the original
shard, and in the next round’s epoch consensus stage, the
blocks of the new shard consensus will continue to be linked
from the C-Block.

If a shard becomes a dormant shard, it means that the
number of transactions and blocks in this shard during the
current epoch is far below the theoretical value. This will lead
to a reduction in the incentive for block generation within the
shard, and a decrease in the willingness of consensus nodes to
participate in this shard. At this point, these inactive dormant
shards need to be merged. When merging dormant shards, C-
Shard considers the semantic distance between the centroids
of the shards and selects the semantic shards with the closest
semantic distance to merge, in order to ensure the similarity
of semantics in the new shard. The result is also formed into
a consensus C-Block in the form of transactions, and added
to the new shard. The forward pointer of the C-Block points
to the two shard chains before the merge, linking historical
transactions.

After the new shards are constructed, although the trans-
actions from the old shards are linked to the new shards in
the form of blocks, the new shards need to filter historical
transactions based on the C-Block. The semantic features, i.e.,
transactions, allocated to the current shard are used to locally
construct retrieval indexes on the nodes, generating ivflists
and the centroids of each ivflist. C-Shard updates the Coarse
Filter based on the centroids of each shard and broadcasts it
to the shards.

3) Node Reconfiguration Strategy: In blockchain, when a
transaction is initiated through intra-shard transactions, the
transaction can directly achieve consensus and be added to
the chain within the current shard, resulting in the lowest
communication cost for the transaction process. Otherwise,
the transaction needs to be forwarded to the destination shard
via relay nodes, increasing communication costs. Additionally,
for sharded blockchains, honest nodes are typically evenly
distributed among the shards, while malicious nodes tend to
aggregate in specific shards to influence the blockchain by
affecting the shards. In order to reduce the communication cost

of data being added to the chain and ensure the security of
the blockchain, it is necessary to reassign nodes to the shards
within the blockchain network in each epoch.

To ensure the security of the blockchain, in each epoch, all
nodes reconfigure the shards by solving HASH puzzles and
selecting the remainder of the results. However, DS-Nodes,
which are the initiators of transactions, often frequently modify
files within a short period or focus on a specific domain for a
certain period of time, resulting in semantic similarity among
the transaction data uploaded within a specific time frame. To
reduce the number of cross-shard transactions, preconfig is set
as a threshold to consider whether the DS-Node is subject to its
tendency when reconfiguring. If not, the result of solving the
HASH problem is still used as the basis for reconfiguration.
For other nodes, it is only necessary to use the reconfiguration
strategy to evenly distribute the nodes in the blockchain.

During the SSB Sharding Stage, C-Shard will read the
on-chain transactions of each shard within an epoch, and
record the initiator node address and the shard to which each
transaction belongs. In each round of reconfiguration, nodes
select the shard with the most transactions as the trending
shard SI

trend for the DS-Node, where I represents the I of
the reconfiguring node. For DS-Nodes that did not initiate
any transactions in the current epoch, the sharding committee
will continue to use the previous trending shard as their
SI
trend. During reconfiguration, SI

trend is used as the candi-
date for the node’s reconfigured shard, and with probability
preconfig , it is selected as the reconfiguration result SI

reconf ,
i.e., SI

reconf = SI
trend. With a probability of (1−preconfig),

a shard is randomly selected as the reconfigured shard, i.e.,
SI
reconf = random(k).
Finally, C-Shard modifies the belonging shards of these

nodes in the semantic state tree and broadcasts the semantic
state tree mapped to the C-Block to all shards.

B. Strategy for Consensus Stage

1) Consensus Protocol: In SSB, DS-Nodes exhibit a ten-
dency to choose shards, while DS-Nodes are evenly distributed
across the shards. For sharded architectures, in order to
prevent malicious nodes from masquerading as DS-Nodes
by aggregating their tendencies towards specific shards, and
thereby compromising security, we propose a Proof of 2 Role-
based Work consensus protocol based on the PoW consensus
protocol.

Similar to the PoW protocol, Po2RW is also based on
proof of work and has the same consensus process. In theory,
it has a similar communication cost to PoW. However, the
difference is that for different types of block-producing nodes,
the difficulty requirements of Po2RW when producing blocks
are inconsistent.To achieve this, in addition to the difficulty
coefficient pdifficult, the block header in Po2RW needs to
include a role difficulty coefficient prole to adjust the difficulty
of proof-of-work for different roles. Then the result judgment
of the consensus solver HASH in Po2RW is corrected to
prole × pdifficult. The role difficulty coefficient of role A
defaults to 1, and the coefficient of role B refers to the block’s
prole field. Therefore, the computational overhead of role A
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is the same as in the PoW protocol, while the computational
overhead of role B is 1/prole times that of the PoW protocol.

In SSB, we set the default role difficulty coefficient of DS-
Nodes to 1, while the role difficulty coefficient of DS-Nodes
is set to prole. This is because during node reconfiguration,
OS-Nodes are always randomly assigned to shards, while DS-
Nodes have the potential to cluster into specific shards due
to shard inclination. In such shards, an excessive number of
clustered DS-Nodes can control the shard consensus results.
To mitigate potential risks, SSB weakens the computing power
of DS-Nodes by setting prole to a value less than 1, thereby
enhancing the influence of OS-Nodes within the shards and
balancing the advantage brought to DS-Nodes by shard incli-
nation.

In SSB, the Po2RW consensus protocol is closely linked
with the Node Reconfiguration Strategy. By continuously ad-
justing prole and preconfig , it achieves a dynamic balance be-
tween security and efficiency. Derived from PoW, the Po2RW
consensus protocol also demonstrates resistance to common
security attacks in blockchain systems, as detailed in VI.

2) Semantic Tree: In order to determine the shard of
each node in the blockchain when validating transactions and
receiving information, as well as to combine Po2RW to verify
the semantic node type during consensus, we modify the state
tree to a Semantic State Tree. In comparison to the state tree,
the leaf nodes of the Semantic State Tree will include an
additional field Shard# of length kmax bits and a 1-bit role
field isData. Here, kmax represents the maximum number of
shards in the SSB, indicating the shard to which the node
belongs, while the isData field is used to distinguish between
data semantic and DS-Nodes. Notably, as the R-Node retains
the information of multiple shards, multiple bit positions of
Shard# are set to 1, and the isData field maintains consistency
across all shards based on whether the node possesses data.

The local semantic state tree will retain the public key θ
and shard information of the nodes in the same shard, and
update their node type based on the consensus within the
shard. However, for nodes not in the same shard, the Semantic
State Tree only retains their shard information and uses a
regular pointer to point to the account, without serving as a
validation node for the Merkle tree. For relay nodes located
in the same shard, the Semantic State Tree similarly retains
all their information and updates accordingly.

Meanwhile, to rapidly verify the legitimacy of transactions
and obtain metadata from nodes, we construct a Semantic
Transaction Tree in the SSB. The semantic transaction tree
reads transactions from the blocks of the current shard,
forming a practical Merkle tree with Dataid. Its leaf nodes
correspond to semantic features, and the content of the leaf
nodes mainly consists of the data owner’s address for that
semantic feature, as well as the shard in which the semantic
node resides.

3) Cross Shard Transaction: Since the entire corpus is
divided into different shards, different shards cannot communi-
cate directly. Cross-shard transactions need to be divided into
two related intra-shard transactions, and consensus is reached
in each shard based on Po2R2W. As illustrated in Figure 3,
this is a typical example of a cross-shard transaction.

Transaction 𝜏 Transaction

𝜏𝑟𝑒𝑙𝑎𝑦

Shard #2Shard #1

C - Shard

Node A Node B

Block

OS-Node

DS-Node

Cross-shard

Tx Relay

Receipt Relay

C-Node

R-Node

𝜏𝑟𝑒𝑠𝑝

Broadcast

Broadcast

Receipt 𝜏𝑟𝑒𝑠𝑝
𝜏𝑟𝑒𝑙𝑎𝑦

Broadcast

Fig. 3. Example of Cross-Shard Transaction Process

First, DS-Node A in Shard #1 creates an original transaction
ℸ. Node A needs to extract the semantic feature of the raw
data, validate the off-chain original file, and sign the original
transaction. To facilitate the upload of the transaction by light
nodes, node A directly broadcasts the original transaction ℸ
within Shard #1 in the following format:

ℸ =<< M >,σA > (1)

where σA represents the digital signature of node A using the
private key for the transaction content M .

Upon receiving the original transaction ℸ via the P2P
network within Shard #1, the semantic node first uses a Coarse
Filter to determine whether ℸ is a cross-shard transaction. For
in-shard transactions, the semantic node directly validates the
transaction using node A’s public key in the local Semantic
Transaction Tree and then packages it into a block. For cross-
shard transactions, only relay nodes with functionality in both
Shard #1 and Shard #2 have sufficient information to process
them. Upon receiving ℸ, such a R-Node C creates a relay
transaction ℸrelay in Shard #2 and broadcasts it, represented
as follows:

ℸrelay =<< T ′
id, Type,AddrC ,ℸ >, σC > (2)

where T ′
id represents the transaction ID in Shard #2, and σC

represents the digital signature of C on the transaction.
Upon receiving the relay transaction ℸrelay via the P2P

network within Shard #2, the semantic nodes utilize the
public keys from the Semantic State Tree and the Semantic
Transaction Tree to validate the transaction and include it in
the blockchain. At this point in Shard #2, Tid is incremented,
and the Semantic Transaction Tree is updated.

After the successful inclusion of the transaction in the
blockchain in Shard #2, both the shard nodes in the committee
shard and the relay node will send confirmation receipts to the
DS-Node A. The format of the confirmation receipt ℸresp is
as follows:

ℸresp =<< Tid, T ype,Addr,ℸ >, σ > (3)

Node A needs to obtain confirmation receipts from both the
C-Shard and the R-Nodes in order to trust that the transaction
has been successfully included in the blockchain. However,
due to information loss, node A can still choose not to trust
the success of the cross-shard transaction and continue to
send cross-shard transactions. However, since in Shard #2,
the raw data in the transaction has already been updated
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in the Semantic Transaction Tree, the new transaction will
not be successfully validated, and node A will not receive a
confirmation receipt.

V. THE IMPLEMENTATION OF SEMANTIC INFORMATION
RETRIEVAL

This section mainly introduces index construction and se-
mantic feature retrieval in the Semantic Information Retrieval
(SIR) architecture. Inspired by FAISS [28], we model the
retrieval of semantic information as an approximate nearest
neighbour search problem and reduce the cost of index con-
struction in a distributed manner.

Residual Vector

DPQ Code

Centroids

Coarse 

Filter

𝜉𝑘,𝑙

Index Construction Process

Semantic

Nodes

Top-k Result

Encode

Distributed ADC

Train

Off-chain

Sort

Calculate

DPQ codes for different sub-corpus

Insert

Retrieval

Relay

Nodes

Embedding

Metadata

Query

Residual Vector

Calculate

Distance Table Semantic Retrieval Process

DPQ codes for

same sub-corpus

CodeBooks

Train based on Sub-Corpus

Semantic Feature

Fig. 4. The Main Execution Stages and Architecture of SIR

The indexing construction process, as shown in Figure 4,
begins with the data owner embedding the metadata to obtain
its semantic features. Based on the current Coarse Filter,
the semantic features are categorized into the corresponding
ivflists ξk,l and sub-corpora Ck, along with the centroids
ξck,l corresponding to ξk,l. The Coarse Filter is updated in
each epoch based on the current data of each sub-corpora. The
residual vector is obtained with ξck,l as the reference for the
current sub-corpora, and the residual vector undergoes DPQ
for the current sub-corpora to obtain the DPQ code of the
semantic feature. The Dataid and DPQ code of the semantic
feature are is inserted at the end of ξk,l.

The semantic retrieval process, as depicted in Figure 4,
begins with the data querier embedding to obtain its semantic
features based on the current Coarse Filter, determining the
ivflists ξk,l to which the semantic features belong. Specif-
ically, to improve retrieval performance, multiple ξk,l are
obtained during retrieval, and results are searched for in
multiple ivflists. For any ivflist, the semantic feature of
the Query first needs to compute the residual vector with ξck,l.
The residual vector is used to calculate the Distance Table with
the codebook. Each shard sorts the retrieval results based on
the Distance Table and ultimately returns the top-k retrieval
results to the data querier. Finally, the data querier obtains

metadata from the data owner’s off-chain database through
P2P networks.

A. Space Compression

Regardless of whether it is for images or text, the se-
mantic features extracted through embedding are often high-
dimensional sparse vectors, and the storage cost of con-
structing a corpus with such vectors is enormous. From the
perspective of blockchain, this also imposes excessively high
memory requirements on nodes.

1) Quantization: The goal of vector quantization is to
encode source data, which has a probability density function,
into as few bits as possible (i.e., low rate), allowing the
data to be recovered from the bit representation with the
highest possible quality (i.e., small average distortion). This
is a destructive process that causes information loss.

To balance the quantization rate and average distortion, the
Product Quantizer (PQ) [29] was proposed as an optimization
algorithm. It truncates all source vectors x in the corpus into
j groups of sub-vectors xj . Each group of sub-vectors is
clustered separately to form PQ codes, which are used to
represent x in the corpus, achieving a high quantization rate.
Furthermore, a codebook is utilized to store the relationship
between the cluster centroids and PQ codes, thereby maintain-
ing a low average distortion.

However, on a large data scale, performing PQ on the entire
corpus is extremely costly and unfavourable for distributed
retrieval. Based on the Product Quantizer, we propose a
Distributed Product Quantizer (DPQ) scheme for SIR appli-
cations. As illustrated in Figures 4, the data in the corpus
is first pre-classified by a Coarse Filter based on semantic
similarity into K subsets, e.g., K semantically similar sub-
corpora Ck. Then, each sub-corpus Ck is locally quantified
in parallel using the Product Quantizer to form DPQ codes,
and local codebooks are trained to store the centroid vectors
of each cluster.

In SIR, the process of forming DPQ codes is primarily
achieved through K-means. This is because the simplicity
and efficiency of K-means make it suitable for large-scale
data. Additionally, K-means clusters data by minimizing the
Euclidean distance between them, which aligns with the goal
of DPQ to minimize the distance between the corpus source
data and the centroid vectors in the codebook. In DPQ, the
number of cluster centroids for each subvector xj is 2nbit,
and the length of the subvector xj is nsegment.

2) Decode: To determine the semantic similarity between
the query data v and the target data x, the retrieval process
requires decoding DPQ encoding. In the Semantic Information
Retrieval (SIR) framework, v is first filtered through the Coarse
Filter to select multiple similar sub-corpora Ck. Since DPQ
quantization essentially approximates all local source data to
the vector coordinates of cluster centroids, and the codebook
stores the vector coordinates of these local cluster centroids, v
is computed in parallel with the codebook in each Ck to obtain
a local distance table. By comparing the distance tables, the x
with the closest semantic relationship can be quickly found.
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B. Index Construction

1) Inverted File System: The inverted file system organizes
all corpus data in accordance with predefined indexing rules,
thereby streamlining the retrieval process, and making it a
popular choice in retrieval systems. The Semantic Information
Retrieval (SIR) system also employs an inverted file system
structure, primarily comprising the inverted index and inverted
list substructures. In SemantiChain, each sub-corpus is seg-
mented into multiple ivflists based on semantic distance.
Consequently, in SIR, the inverted list consists of ivflists,
while the inverted index is formed by the centroids of each
ivflist.

In order to reduce the cost of retrieval, the inverted index is
structured as a dictionary, with the key being the centroids
of each ivflist and the value being the ivflists and its
corresponding shard. The inverted list is formed by linking
the entries of the ivflists in the form of a linked list. In SIR,
each entry corresponds to a semantic feature, so each entry
is composed of the unique Dataid and DPQ code for that
semantic feature. Based on the judgment result of the Coarse
Filter, each entry is inserted into the corresponding inverted
list to build the inverted file system.

During retrieval, the inverted index is obtained based on
the judgment result of the Coarse Filter for the query vector.
The corresponding inverted list is traversed, and the semantic
distance is calculated for each inverted list entry to obtain the
topk results.

2) Coarse Filter: To achieve non-exhaustive semantic re-
trieval, we have constructed a Coarse Filter to filter the
retrieval scope of the corpus. The Coarse Filter is primarily
based on the Inverted file system. As semantic information is
a high-dimensional sparse vector, the main task of the Coarse
Filter is to use clustering algorithms, such as K-means, to
form l clusters from the current corpus, which are referred
to as ivflists in SIR. The index numbers of the clustering
results serve as the inverted index in the Inverted file system,
and the inverted list corresponds to the ivflists formed by the
clustering.

In SIR, in order to accurately cluster semantic features,
the local Coarse Filter needs to be updated periodically with
an epoch. Transactions are stored in the form of blocks in
each shard based on semantic distance, allowing each shard
to update the Coarse Filter in parallel. At the end of an epoch,
all transactions of the round have been recorded on the chain,
and each shard reads transactions from the blocks. Within
each shard, transactions are allocated to new ivflists in a
clustered manner, and centroids for the clusters are obtained.
Subsequently, each shard sends its ivflist centroids to the C-
Shard via a P2P network. Nodes in the C-Shard aggregate the
ivflist centroids from different shards, update the inverted
index of the Coarse Filter, and distribute the updated Coarse
Filter to each shard as a toolkit, initiating a new round of epoch
cycles. The results of the Coarse Filter update directly impact
the consensus of transactions, and its security is ensured by
blockchain consensus. However, this clustering method may
misjudge the positions of semantic features on the cluster
edges during retrieval. Therefore, this paper employs the cell-

TABLE III
NODE TYPE OF SECURITY ANALYSIS OF THE CONSENSUS PROTOCOL

Abbreviation Meaning
nall Total number of semantic.
no Number of honest OS-Nodes.
nd Number of honest DS-Nodes.
nm Number of malicious nodes.
nmo Number of malicious OS-Nodes.
nmd Number of malicious DS-Nodes.

probe method to simultaneously search for multiple ivflist
near the target cluster, aiming to improve retrieval accuracy.

VI. SECURITY ANALYSIS

In this section, we will discuss the risks posed by semantic
scalability blockchain from a security perspective, including
man-in-the-middle attacks, on/off-chain data inconsistency,
and the security of the Po2RW consensus protocol. Details
are as follows.

A. Security Analysis of the Consensus Protocol

To demonstrate the security of the Po2RW consensus, we
assume that each node has equal computational power and that
the distribution of honest nodes is uniform. The definitions of
relevant terms are provided in Table III.

1) Security Analysis of Sharding Blockchain in PoW Con-
sensus Protocol: In a blockchain using the PoW consensus
mechanism, security is compromised when malicious nodes
control more than half of the total computational power, known
as a 51% attack. Given uniform computational power among
nodes, the number of malicious nodes needed to control the
blockchain is:

nm > no + nd (4)

In sharded systems, consensus is achieved within each
shard. Hence, malicious nodes only need to control a specific
shard to compromise the entire blockchain. The number of
malicious nodes required in this scenario is:

nm >
no + nd

K
(5)

where k is the number of shards.
To mitigate security risks in sharded blockchains, nodes are

randomly reconfigured after each epoch by solving a hash,
thereby increasing the number of malicious nodes to the limit
defined by Eq. (4). Consequently, for a sharded blockchain
with a PoW consensus protocol, Eq. (4) and Eq. (5) represent
the upper and lower bounds on the number of blocks controlled
by malicious nodes.

2) Security Analysis of Sharding Blockchain in Po2RW
Consensus Protocol: In SSB’s node reconfiguration strategy,
DS-Nodes undergo random reconfiguration, while DS-Nodes
tend to select shards based on their owned data. Malicious
nodes can exploit this by aggregating in specific shards.
However, by adjusting the values of preconfig and prole, we
can achieve a balance between the security and efficiency of
the blockchain.
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For malicious nodes, if they are all DS-Nodes, their distribu-
tion across shards is uniform during node reconfiguration. due
to the random allocation of DS-Nodes. Furthermore, since the
proof-of-work difficulty for DS-Nodes is prole times that of
DS-Nodes, the number of malicious nodes required to control
the blockchain is given by:

nm > no + prole × nd (6)

Since prole ≤ 1, by adjusting prole to 1 in extreme cases, we
can sacrifice efficiency to achieve security equivalent to Eq.
(4), thereby causing the Po2RW consensus protocol to degrade
to a PoW consensus protocol.

Additionally, malicious nodes can only aggregate in shards
after becoming DS-Nodes. If all malicious nodes are DS-
Nodes and honest nodes are uniformly distributed, the number
of malicious nodes required to control the blockchain is given
by:

nm >
no + prole × nd

preconfig × prole ×K
(7)

Since preconfig ≤ 1, in an ideal scenario, by adjusting prole to
1 and preconfig to 1/k, all consensus nodes undergo random
reconfiguration, achieving security equivalent to Eq. (4).

From the perspective of malicious nodes, the optimal and
most common approach is to have nm = nmo + nmd. In this
case, the number of malicious nodes required to control the
blockchain is given by:

nmo + preconfig × prole ×K × nmd > ns + prole × nd (8)

Similarly, adjusting preconfig and prole can achieve a balance
between security and efficiency.

B. Security Analysis of Man-in-the-Middle Attacks

Due to the fact that nodes within each shard in Seman-
tiChain are connected through P2P networks, nodes from dif-
ferent shards do not communicate directly. Therefore, Seman-
tiChain implements cross-shard transactions through relaying,
which introduces the possibility of a man-in-the-middle attack.

1) Security of Cross-shard Transaction Relay: As shown in
Figure 3, in SemantiChain, when node A initiates a legitimate
transaction τ << M >,σA >, and node C obtains semantic
feature information M from τ . If node C is a malicious node
and does not relay τ to form τrelay, but instead initiates
a new transaction τnew << M >,σC >, as the owner
of M is A, τnew is not considered a legitimate transaction
in SemantiChain. However, τnew may still be considered a
legitimate transaction and added to the blockchain of shard
#2.

However, since SemantiChain has multiple R-Nodes be-
tween the two shards, it is not solely dependent on node
C. In a blockchain architecture, honest shard nodes always
constitute the majority. Therefore, after obtaining τ , the nodes
that relay τrelay in shard #2 still constitute the majority, and
the efficiency of broadcasting τrelay in shard #2 far exceeds
that of τnew. Consequently, the majority of nodes in shard
#2 also validate the legitimacy of τrelay, ultimately ensuring
the security of cross-shard transactions relaying through node
consensus.

2) Security of Transaction Confirmation Receipt Propa-
gation: After the cross-shard transaction is added to the
blockchain, the R-Nodes will send a confirmation receipt to
node A to inform it of the transaction’s outcome. However,
due to the lack of direct communication between shard #1 and
shard #2, A cannot directly confirm whether the transaction
has been genuinely validated in shard #2.

Similarly, as shown in Figure 3, after node A initiates a
legitimate transaction τ << M >,σA >, node C can immedi-
ately forge a transaction confirmation receipt ℸresp to instruct
A to stop sending τ . However, in SemantiChain, for the same
reasons, multiple R-Nodes exist between the two shards, and
ℸresp is also forwarded to node A through C-Node. Therefore,
despite node C’s attempt to stop the sending of τ , node A
can still determine whether it is necessary to continue sending
τ based on the number of received ℸresp. This ensures the
security and reliability of transaction confirmation receipts.

C. Security Analysis of On/Off-chain Data Inconsistency At-
tacks

The blockchain system SemantiChain improves its scalabil-
ity through a combination of on-chain and off-chain methods.
Consequently, the fundamental issue faced by data queriers
is whether the semantic features stored in the blockchain
correspond to the metadata in the off-chain database.

In SemantiChain, data queriers first obtain the metadata
corresponding to Dataid through P2P networks. The data
queriers perform a hash verification on the metadata to obtain
Hmeta, and compares it with Dataid for consistency. Since the
queriers possess the address of the data owner, if the metadata
is obtained from the data owner’s off-chain database, weak
validation of the metadata can be obtained at this point. When
the data owner initiates a transaction, the correspondence
between Dataid and the semantic features of the metadata
is not verified in order to reduce the cost of node consensus.
Therefore, weak validation can only resist data inconsistency
attacks when the data owner is trustworthy.

To fully resist data inconsistency attacks, data queriers can
also extract semantic features from the metadata locally and
calculate the semantic similarity with the query vector. If the
semantic similarity difference in the query results is within
an extremely small range, strong validation of the metadata is
achieved. Metadata that passes strong validation can prove its
correspondence with the semantic features on the blockchain.

D. Security Analysis of Other Attacks
The unique resistance to man-in-the-middle attacks arising

from sharding technology, resistance to Sybil attacks and 51%
attacks brought by the Po2RW consensus protocol, and the
resistance to data inconsistency attacks resulting from the on-
chain and off-chain scalability enhancement techniques have
been discussed above. Additionally, SemantiChain functions
as a data storage architecture without the concept of balance,
rendering economically motivated attacks like double spending
meaningless. As SemantiChain remains a blockchain-based ar-
chitecture, its security is inherently ensured by the blockchain
itself, providing natural resistance against risks such as data
tampering and replay attacks.



11

VII. EXPERIMENT

A. Basic Settings

1) Environment: We constructed a SemantiChain simulator,
which runs on a 64-bit Linux server (Ubuntu 20.04) equipped
with an Intel Core(TM) i9-12900 CPU, NVIDIA RTX A5000,
and 64GB of memory. Additionally, we set the block interval
time for the SemantiChain simulator to be 0.1s, the number
of blocks per epoch to be 1000, and the transaction broadcast
rate to be 1000tx/s.

2) Datasets and Models: This experiment selected QUORA
[30], MSMARCO [31], and Stanford Online Products(SOP)
[32] as experimental datasets. QUORA is based on real data
from the QUORA Question Answering site, with a corpus
of approximately 520K pieces of text and 10K questions.
MSMARCO, proposed by Microsoft and based on Bing,
contains approximately 8M text and 1K questions. To simplify
the experiment, we extracted the first 10% of the corpus
from MSMARCO as the experimental corpus. Stanford Online
Products includes 120K product images and 22K categories.
We selected one product image from each category as the
corresponding question, with other images serving as the
experimental corpus. Since the process of semantic feature
extraction is not the focus of this paper, we used pre-trained
models all-mpnet-base-v2 [33] and clip-ViT-L-14 [34] to map
the data into the semantic space.

3) Benchmark: For the retrieval experiments, we selected
some commonly used ANN retrieval algorithms. The brute
force algorithm is the most naive approach, without index
construction and vector quantization. HNSW [35] is a graph
retrieval scheme based on the theory of six-dimensional space,
with index construction. The PQ [29] scheme does not in-
volve index construction, only vector quantization. IVFPQ
[29] involves both index construction and vector quantization
through an inverted file list. The FAISS scheme combines the
advantages of HNSW and IVFPQ, optimizing both time and
space, and is an advanced ANN solution.

Furthermore, from the perspective of blockchain, MSTDB
is the SOTA semantic blockchain, which uses TD-IDF and
semantic Merkle trees to store and retrieve semantic data, and
Monoxide is the SOTA state sharding blockchain. We use them
as the baseline for the experiment.

4) Evaluation Metrics:
• Recall: The ratio of the number of retrieved relevant se-

mantic features to the actual number of relevant semantic
features reflects the ability of the retrieval system to find
relevant documents.

• Precision: The ratio of the number of retrieved relevant
semantic features to the total number of retrieved features
reflects the performance of the retrieval system.

• NDCG: Normalized Discounted Cumulative Gain, rep-
resents the normalized cumulative benefit of the top-k
positions with the inclusion of position information.

• MAP: Mean Average Precision measures the system’s
accuracy and order of returning relevant documents by
calculating the average precision of all retrieval queries.

• Time: The Average Search Time (ms) refers to the
duration required to retrieve. The Index Construction

Time (ms) denotes the duration needed for index creation
by retrieval systems, also measured in milliseconds.

• Memory: The memory usage during retrieval by different
retrieval algorithms, is measured in megabytes.

B. Experiment of Malicious Node Resistance

1) Experimental Setup: We conducted experiments to ver-
ify the security of the Po2RW protocol under different
values of preconfig , prole, ro, and rd. Here, preconfig =
{0, 0.05, 0.1, 0.5, 1.0}, prole = {0, 0.01, 0.1, 1.0}, ro =
{0, 0.1, 0.2, ..., 1.5} represents the ratio of malicious OS-
Nodes to honest ones, and rd = {0, 0.1, 0.2, ..., 1.5} represents
the ratio of malicious DS-Nodes to honest ones.

We fixed the number of shards in the blockchain at 32,
with 10,000 honest OS-Nodes and 10,000 honest DS-Nodes.
Initially, all nodes were evenly distributed among the shards.
Honest nodes followed the reconfiguration rules, while ma-
licious nodes attempted to concentrate in the same shard as
much as possible. If the computational power of malicious
nodes within a shard exceeded that of honest nodes, the
blockchain was considered to be under the control of malicious
nodes. For each parameter combination, we conducted 1000
reconfigurations to calculate the probability of the blockchain
successfully resisting control by malicious nodes under various
parameter combinations.

2) Experimental Evaluation: The experimental results are
shown in the left part of Figure 5. For each row, prole remains
unchanged, and for each column,preconfig also remains the
same. It can be observed that as preconfig increases, the
tolerance of SSB towards malicious nodes gradually decreases,
primarily towards malicious DS-Nodes. This is because, dur-
ing the node reconfiguration phase, a higher preconfig makes
it more likely for the SSB to follow the shard tendency of the
DS-Node, while the reconfiguration of the OS-Node is always
random, maintaining a uniform distribution. This tendency
makes it easier for malicious DS-Nodes to cluster together,
thereby reducing SSB’s resistance to malicious nodes.

For each column, as prole increases, although SSB’s resis-
tance to DS-Nodes gradually decreases, its resistance to OS-
Nodes actually increases. This is because Po2RW indirectly
adjusts their computational power by controlling the mining
difficulty coefficient of block production for these two types
of consensus nodes. In SSB, the mining difficulty coefficient
for OS-Nodes is 1, and prole represents the coefficient for DS-
Nodes. When prole approaches 1, the computational power of
DS-Nodes and OS-Nodes becomes more balanced. Due to the
shard tendency of DS-Nodes, a small number is also needed
for malicious DS-Nodes to successfully cluster and control
a specific shard, leading to lower tolerance by SSB towards
them. Since OS-Nodes and honest DS-Nodes are uniformly
distributed, the increasing computational power of honest DS-
Nodes can tolerate more malicious OS-Nodes.

When prole is 0, at this point, the tolerance of SSB to the
number of malicious DS-Nodes reaches infinity, while the tol-
erance to the number of malicious OS-Nodes remains constant.
This is because at this point, DS-Nodes no longer participate in
node consensus, and their computing power cannot affect the
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Fig. 5. The Probability of SSB Successfully Resisting Malicious Nodes under Different prole and preconfig , with x-axis as rd and y-axis as ro

security of the blockchain. From the perspective of consensus,
only OS-Nodes are left to participate in consensus in SSB,
and at this point, the Po2RW consensus protocol degrades to
POW. On the other hand, since DS-Nodes no longer participate
in block consensus, preconfig no longer has performance and
security implications. From the perspective of reconfiguration,
there is only one type of node in the blockchain at this point,
and the reconfiguration strategy also degrades to a random
reconfiguration strategy.

In particular, when a subgraph with prole = 1 and
preconfig = 0, it can be observed that the tolerance of
SSB to the number of malicious nodes is always in direct
proportion. From the perspective of computing power, when
prole = 1, the two types of semantic nodes are no longer
distinguishable. From the perspective of the reconfiguration
strategy, when preconfig = 0, DS-Nodes also adopt the same
random reconfiguration strategy. At this point, SSB can resist
malicious nodes to a level of approximately 50%.

For the right part of Figure 5, it can be seen that when
prole = 1 and preconfig = 1, SSB only exhibits resistance
when rd is close to 0. This is because when prole = 1, DS-
Nodes and OS-Nodes have the same computing power. At
the same time, with preconfig = 1, malicious DS-Nodes can
arbitrarily cluster in the same shard. Since we have divided
the blockchain into 32 shards, the maximum tolerance of
malicious DS-Nodes has decreased to 1/32 honest nodes.

C. Experiment on the Split-Merge Coefficient of SemantiChain

1) Experimental Setup: We set SemantiChain’s ηupper =
{0.65, 0.80, 0.95} and ηlower = {0.2, 0.4, 0.6}, while keeping
ηmax fixed at 0.1. In each epoch, we adjusted the number of

shards for SemantiChain based on these parameters to obtain
experimental data.
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Fig. 6. Semantichain’s Top-k Retrieval Results based on Different Datasets
and Different Coefficients

2) Experimental Evaluation: From the lower part of Figure
6, it can be observed that, generally speaking, schemes with
higher ηlower or ηupper closer to the middle tend to have
higher NDCG. Particularly, the scheme with ηupper = 0.8 and
ηlower = 0.6 achieves excellent performance across all three
datasets. This is because a higher ηlower makes it easier for
the throughput of each shard to reach the threshold, leading
to more frequent merging between shards and thus achieving
data reintegration. The re-integrated sub-corpus contains more
information, making the subsequent division of the lvflist
more reasonable. As for ηupper, a value that is too low
will cause excessive fragmentation of the shards, resulting in
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overly dispersed data, which is not conducive to information
retrieval; a value that is too high will reduce the probability
of SemantiChain generating new shards. However, this stable
sharding method does not increase the probability of data
reintegration between shards. Therefore, we can also see that
schemes with lower ηupper values tend to have lower NDCG,
while higher ηupper do not necessarily yield better results.

Additionally, it can be seen that there is an inverse relation-
ship between the number of shards and average retrieval time.
Schemes with more shards require longer average retrieval
times. This is because SemantiChain constructs semantic
shards and performs parallel retrieval; the more shards there
are, the less content each shard contains, making it easier
to obtain results with less retrieval time. This relationship
is precisely a manifestation of SemantiChain’s distributed
advantage.

D. Experiment of Retrieval of SemantiChain

1) Experimental Setup: Regarding the ANN algorithms, the
number of inverted lists (nlist), and the quantity of nprobe
(nprobe) will affect the performance of retrieval metrics.
In order to achieve optimal retrieval performance of these
algorithms, according to the empirical formula which is partly
based on the GitHub community 3 and our own experience,
we set nlist to be the arithmetic square root of the total data
volume and set nprobe to be 10% of nlist. For algorithms
using PQ, the sub-vector length nsegments and the number
of centroids affect quantization level and retrieval performance
in a similar manner. Therefore, we fixed nsegments as 8
and only vary the number of centroids to be 27,28,29, i.e.,
nbit being 7, 8, 9, to illustrate their influences. Additionally,
we simulated MSTDB using TF-IDF and binary tree data
structures in Sklearn. For SemantiChain, based on the exper-
imental results in VII-C, we selected the optimal parameters
ηupper = 0.8, ηlower = 0.6, ηmax = 0.1 for comparison.

2) Experimental Evaluation: The performance of the brute
force algorithm demonstrates superior metrics in terms of
NDCG, MAP, Recall, and Precision for all datasets, as shown
in Figure 7a. However, Figure 7b reveals that the brute force
algorithm also exhibits the highest average search time, with
search times of 700.25s for QUORA, 732.27s for MSMARCO,
and 700.25s for SOP at different topk values. Due to the
lack of quantization steps, brute force needs to load the
corpus into memory during retrieval, resulting in memory
usage reaching 1532.02MB, 2364.91MB and 285.41 MB for
QUORA, MSMARCO and SOP, respectively.

In contrast, SemantiChain achieves significantly lower av-
erage search times of only 9.31s, 11.73s and 5.78s under the
same conditions, with memory footprints of only 10.01MB,
14.11MB and 5.05 MB for QUORA, MSMARCO and SOP,
respectively. From Figure 7a and 7b, it can be seen that
SemantiChain only sacrifices a small amount of performance
to construct the index, resulting in a significant reduction
in search time and memory usage. For example, when the
top-k is equal to 10, compared to the brute force algorithm,
SemantiChain’s average NDCG, MAP, Recall and Precision

3https://github.com/facebookresearch/faiss

decreased by about 5.09%, 4.92%, 4.33% and 0.76 respec-
tively, but its average search time and space occupancy is only
1.38% and 0.65% of the cost of the brute force algorithm.

The brute force algorithm represents a naive approach,
and its performance metrics for NDCG, MAP, Recall, and
Precision serve as the theoretical upper limits within the
current semantic space mapping. In contrast, SemantiChain
significantly reduces time and space usage at the cost of
a certain level of precision loss, achieved through index
construction, distributed quantization, and distributed retrieval.
Notably, SemantiChain can control the degree of distortion by
adjusting the number of shards.

Additionally, while the HNSW algorithm demonstrates no
significant difference in NDCG, MAP, Recall, and Precision
performance compared to SemantiChain, it achieves an aver-
age search time of only 1.72s for three datasets. However, this
comes at the expense of higher memory usage, with HNSW
consuming 1667.74MB, 2574.4MB and 310.7MB of memory.
Although the average search time of SemantiChain is higher
than that of HNSW, the average space occupancy is only
0.61% of it.

This is because HNSW also does not have a quantization
step, and the entire corpus needs to be loaded into memory for
retrieval. At the same time, since HNSW also needs to build
a retrieval index with a graph structure to significantly reduce
the time, its memory usage needs to be even greater than
the brute force algorithm. Since the construction of HNSW’s
graph index structure will affect the retrieval performance,
it will also lose retrieval accuracy. SemantiChain, with the
advantage of distribution, can significantly reduce space usage
while ensuring similar retrieval performance.

For other common ANN algorithms such as PQ, IVFPQ,
and Faiss, they all apply product quantization to the corpus,
and varying degrees of quantization have different impacts on
retrieval performance. It is observed that, at the same top− k
value, an increase in the quantization index nbit leads to an
increase in NDCG, MAP, Recall, and Precision. Similarly, in
Figure 7a, memory usage and index construction time also
increase with nbit. However, the average search time is at its
lowest only when nbit is 8. Specifically, the average search
time of the 8-bit quantized IVFPQ algorithm is the shortest at
12.21s, but SemantiChain is still 9.71s faster than it. Similarly,
the memory usage of the 7-bit quantized PQ algorithm is the
least at 42.27MB, and SemantiChain reduces it by 76.09%
compared to it. Overall, SemantiChain demonstrates no signif-
icant differences in NDCG, MAP, Recall, and Precision perfor-
mance compared to these algorithms. However, leveraging the
advantages of distribution, SemantiChain exhibits substantial
improvements in average search time, index construction time,
and memory usage.

3) Statistical Analysis: In this section, we analyzed the
performance comparison of different retrieval schemes and
SemantiChain on the datasets QUORA, MSMARCO, SOP.
We selected some metrics of each scheme at Topk = 10,
including NDCG, Average Search Time, and Memory for
analysis. We used Two-way analysis of variance (ANOVA)
to test whether there is a significant difference (p < 0.05) in
the data means between different schemes and SemantiChain
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Fig. 7. Top-k Retrieval Results of Different Various Search Schemes based on Different Datasets

under the same metrics of the same dataset, and calculated
the corrected significant difference (padj < 0.05) and related
details through Tukey HSD, and put them into Table IV.

It can be seen that when comparing the NDCG, except
for Brute Force, SemantiChain has a significant difference
with most methods on the MSMARCO and SOP datasets,
and is slightly stronger than these methods. On the QUORA
dataset, SemantiChain has no significant difference with most
schemes. For the average search time, on these three datasets,
except for HNSW and 8-bit quantized IVFPQ, SemantiChain
is significantly less than all other schemes. Especially for
PQ 7bit, PQ 9bit and Brute Force, the difference is large,
and SemantiChain only consumes 1.1%-1.4% of their time.
Compared with IVFPQ 8bit and HNSW, in most cases, there
is no significant difference in the average search time of
SemantiChain. In addition, due to the advantages of distribu-
tion, SemantiChain’s memory occupancy is significantly lower
than all algorithms, especially compared with HNSW and
Brute Force, SemantiChain’s memory occupancy on the three
datasets is reduced to an average of 0.96% and 0.97%.

The results of Statistical Analysis are consistent with the
experimental results. Most of the time, compared with other
schemes, SemantiChain can achieve optimization in time and
space without reducing the retrieval performance through this
distributed ANN algorithm.

E. Experiment of Blockchian Performance

1) Experimental Setup: We used TF-IDF and binary tree
data structure in sklearn to simulate MSTDB. Since MSTDB
does not support storing image data, this experiment is not
applicable to the SOP dataset. To emphasize the performance

differences between various blockchain methods, we set the
transaction broadcast rate for each blockchain to 1000 tx/s,
initial shard number to 50, block interval to 0.1s, and simulate
transaction data for throughput and latency testing.

2) Experimental Evaluation: From Table V, it can be seen
that compared to MSTDB, SemantiChain has similar index
building and search times on datasets around 1M in size,
but its memory usage is significantly lower than MSTDB.
By analysis, MSTDB constructs an index by traversing each
data’s keywords to build a multi-branch tree. Since the number
of keywords for each data is a constant, the time and space
complexity of its index building is simplified to O(N), and the
search time complexity is about O(logN), where N represents
the number of data points in the dataset.

SemantiChain computes the arithmetic square root of the
data to form

√
N inverted file lists, with each shard obtaining

a constant number of inverted file lists for distributed product
quantization. Therefore, the index building time complexity
for each shard is about O(

√
N × Nl × logNk), where Nl

denotes the vector dimension and Nk represents the number
of quantization clusters. Since these two parameters are also
constants, the index building time and space complexity are
simplified to O(

√
N), and the search time complexity is

O(
√
N). Thus, leveraging the advantages of its distribution,

SemantiChain achieves greater efficiency in terms of index-
building time and space complexity.

Additionally, Table V also demonstrates the throughput
and latency of various state-of-the-art blockchain methods.
Due to MSTDB lacking on-chain scalability techniques, its
throughput and transaction latency metrics are significantly
weaker compared to SemantiChain and Monoxide. Because
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TABLE IV
PERFORMANCE ANALYSIS OF DIFFERENT SEARCH SCHEMES COMPARED TO SEMIANTICHAIN

QUORA MSMARCO SOP
Metric Scheme MeanDiff P-adj CI-Low CI-Upr MeanDiff P-adj CI-Low CI-Upr MeanDiff P-adj CI-Low CI-Upr

NDCG

Brute Force -0.0205 0.0000 -0.0270 -0.0141 -0.0416 0.0000 -0.0466 -0.0367 -0.1054 0.0000 -0.1072 -0.1036
FAISS 7bit 0.0100 0.0002 0.0035 0.0164 0.0277 0.0000 0.0227 0.0326 0.0996 0.0000 0.0978 0.1014
FAISS 8bit \ \ \ \ 0.0191 0.0000 0.0141 0.0241 0.0608 0.0000 0.0590 0.0626
FAISS 9bit \ \ \ \ 0.0094 0.0000 0.0044 0.0144 0.0284 0.0000 0.0266 0.0302

HNSW \ \ \ \ 0.0638 0.0000 0.0589 0.0688 -0.0591 0.0000 -0.0609 -0.0573
IVFPQ 7bit 0.0098 0.0002 0.0034 0.0163 0.0213 0.0000 0.0163 0.0263 0.1001 0.0000 0.0983 0.1019
IVFPQ 8bit \ \ \ \ 0.0124 0.0000 0.0074 0.0174 0.0614 0.0000 0.0596 0.0632
IVFPQ 9bit \ \ \ \ 0.0057 0.0130 0.0007 0.0107 0.0271 0.0000 0.0253 0.0289

PQ 7bit \ \ \ \ -0.0216 0.0000 -0.0266 -0.0166 0.1082 0.0000 0.1064 0.1100
PQ 8bit \ \ \ \ -0.0258 0.0000 -0.0308 -0.0208 0.0677 0.0000 0.0660 0.0695
PQ 9bit \ \ \ \ -0.0283 0.0000 -0.0333 -0.0233 0.0325 0.0000 0.0307 0.0343

Average
Search
Time

Brute Force -708.1812 0.0000 -721.2732 -695.0892 -706.6395 0.0000 -716.4305 -696.8486 -495.3442 0.0000 -508.4265 -482.2618
FAISS 7bit -137.9753 0.0000 -151.0673 -124.8833 -122.5792 0.0000 -132.3701 -112.7882 -84.2514 0.0000 -97.3337 -71.1690
FAISS 8bit -25.3399 0.0000 -38.4319 -12.2478 -16.3927 0.0000 -26.1836 -6.6018 -28.9070 0.0000 -41.9894 -15.8247
FAISS 9bit -145.7374 0.0000 -158.8294 -132.6453 -127.3465 0.0000 -137.1375 -117.5556 -92.0900 0.0000 -105.1723 -79.0076

HNSW \ \ \ \ 10.3468 0.0299 0.5559 20.1377 \ \ \ \
IVFPQ 7bit -88.2890 0.0000 -101.3810 -75.1969 -96.9887 0.0000 -106.7796 -87.1977 -72.5812 0.0000 -85.6635 -59.4988
IVFPQ 8bit \ \ \ \ \ \ \ \ \ \ \ \
IVFPQ 9bit -94.7456 0.0000 -107.8376 -81.6535 -94.3519 0.0000 -104.1428 -84.5610 -94.6620 0.0000 -107.7443 -81.5796

PQ 7bit -804.4442 0.0000 -817.5362 -791.3522 -913.6001 0.0000 -923.3910 -903.8092 -565.3525 0.0000 -578.4348 -552.2701
PQ 8bit -92.3162 0.0000 -105.4082 -79.2242 -101.0206 0.0000 -110.8115 -91.2297 -96.5932 0.0000 -109.6755 -83.5108
PQ 9bit -806.3864 0.0000 -819.4785 -793.2944 -892.4798 0.0000 -902.2707 -882.6888 -697.7856 0.0000 -710.8680 -684.7032

Memory

Brute Force -1526.0844 0.0000 -1544.1042 -1508.0646 -2440.2872 0.0000 -2480.3740 -2400.2003 -284.5681 0.0000 -288.4244 -280.7118
FAISS 7bit -37.4810 0.0000 -55.5008 -19.4612 -64.2441 0.0001 -104.3310 -24.1573 -4.9914 0.0027 -8.8477 -1.1351
FAISS 8bit -45.0620 0.0000 -63.0818 -27.0422 -70.9919 0.0000 -111.0787 -30.9050 -6.0010 0.0001 -9.8573 -2.1447
FAISS 9bit -51.9433 0.0000 -69.9631 -33.9235 -77.9724 0.0000 -118.0593 -37.8856 -8.5752 0.0000 -12.4315 -4.7189

HNSW -1620.8367 0.0000 -1638.8565 -1602.8169 -2530.3419 0.0000 -2570.4288 -2490.2551 -307.1155 0.0000 -310.9718 -303.2592
IVFPQ 7bit -37.2500 0.0000 -55.2698 -19.2302 -59.1540 0.0004 -99.2409 -19.0672 -4.6038 0.0079 -8.4601 -0.7475
IVFPQ 8bit -46.6995 0.0000 -64.7193 -28.6797 -68.3539 0.0000 -108.4407 -28.2670 -6.1728 0.0001 -10.0291 -2.3165
IVFPQ 9bit -49.8982 0.0000 -67.9180 -31.8784 -81.5525 0.0000 -121.6393 -41.4657 -8.0830 0.0000 -11.9393 -4.2267

PQ 7bit -33.3663 0.0000 -51.3861 -15.3465 -50.9589 0.0035 -91.0458 -10.8721 \ \ \ \
PQ 8bit -37.2215 0.0000 -55.2413 -19.2017 -59.0342 0.0004 -99.1210 -18.9473 -4.5680 0.0086 -8.4243 -0.7117
PQ 9bit -45.3016 0.0000 -63.3214 -27.2818 -69.9897 0.0000 -110.0765 -29.9028 -6.5164 0.0000 -10.3727 -2.6601

TABLE V
BASIC PERFORMANCE OF DIFFERENT BLOCKCHAINS

Metric SemantiChain MSTDB Monoxide

Index Construction Time (s) QUORA 7.08 7.35 /
MSMARCO 7.33 9.26 /

Average Search Time (s) QUORA 9.39 9.04 /
MSMARCO 11.75 7.51 /

Memory(MB) QUORA 9.31 196.64 /
MSMARCO 9.72 260.11 /

Throughput(tx/s) / 813.20 9.79 489.92
Latency(ms) / 22.97 2287.73 104.11

the number of shards in Monoxide is fixed, its transaction
throughput is also far below the transaction broadcast rate
of 1000tx/s, indicating there is still room for scalability
improvement. Moreover, the significant number of transactions
consistently waiting for verification in the transaction pool
contributes to increased latency in both comparison schemes.

Table VI shows the retrieval performance of different
blockchains. Since Monoxide is not designed for informa-
tion retrieval, and MSTDB can only store textual data, we
chose QUARO and MSMARCO datasets and MSTDB for
comparison. It can be seen that Semantichain’s NDCG is
45.88% higher than MSTDB. This is because MSTDB uses
keywords as the semantic representation of data, without
considering contextual influences, thus its semantics are not
precise enough. Additionally, in QUARO and MSMARCO,
text lengths are limited, and semantic features based on

TABLE VI
NDCG EXPERIMENTAL RESULTS OF BLOCKCHAINS

Topk MSTDB SemantiChain

1 QUORA 0.0440 0.7670
MSMARCO 0.0312 0.5679

3 QUORA 0.0669 0.8189
MSMARCO 0.0509 0.6414

5 QUORA 0.1012 0.8382
MSMARCO 0.0784 0.6688

10 QUORA 0.1830 0.8548
MSMARCO 0.1445 0.6912

20 QUORA 0.3080 0.8632
MSMARCO 0.2453 0.7041

keywords tend to produce many similar results in large-scale
data, leading to decreased retrieval performance.

VIII. CONCLUSION

This article primarily addresses the functional deficiencies
of blockchain in big data storage and retrieval. To this end,
we introduced a novel blockchain sharding technique called
Semantic Sharding to tackle the scalability issues of semantic
blockchain as a storage architecture. Building upon this, we
developed the Semantic Sharding Blockchain (SSB), which
surpasses the limitations of blockchain storage file types by
understanding and utilizing data semantics. To ensure the
security and scalability of SSB, we proposed the Po2RW con-
sensus protocol and a reconfiguration strategy to dynamically
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balance between them, enabling SSB to adapt to different
application scenarios. Additionally, we proposed a distributed
retrieval architecture called Semantic Information Retrieval
(SIR) to achieve retrieval of big data within the blockchain,
leveraging distributed advantages to reduce the time and space
costs of ANN retrieval algorithms. Finally, by integrating
SSB with SIR, we presented a trusted retrieval blockchain
based on semantic sharding called SemantiChain. Its security
and effectiveness are validated through secure analysis and
experiments, proving superior to state-of-the-art blockchain
database architectures.

In our future work, we will focus on optimizing Seman-
tiChain from the perspectives of SSB and SIR. For SSB, the
decision-making process for sharding strategies can be opti-
mized based on the specific environment. For SIR, although
distributed retrieval already offers advantages, we can imple-
ment a pipeline retrieval process to expedite retrieval speed,
especially when handling multiple simultaneous queries.
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