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Fed-PEMC: A Privacy-Enhanced Federated Deep
Learning Algorithm for Consumer Electronics

in Mobile Edge Computing
Qingxin Lin, Shui Jiang, Zihang Zhen , Tianchi Chen, Chenxiang Wei, and Hui Lin

Abstract—Consumer electronic devices often involve processing
and analyzing a large amount of user personal data. Nevertheless,
owing to apprehensions regarding privacy and security, users
are hesitant to transmit this sensitive data to centralized cloud
servers for training. The combination of mobile edge computing
and federated learning (FL) enables local devices to access
computational power and storage resources, allowing them
to engage in distributed learning and model training while
safeguarding user privacy. However, these resources are not
unlimited. Furthermore, as artificial intelligence technology pro-
gresses, inference attacks have become a major threat to privacy
in traditional federated learning. To address these challenges, we
propose an innovative federated deep learning algorithm, called
Fed-PEMC. This algorithm combines local differential privacy
and model compression techniques. By leveraging deep rein-
forcement learning for model compression, Fed-PEMC reduces
model size while maintaining model accuracy, improving commu-
nication efficiency. We also introduce customized label sampling
to accelerate model training. Before uploading the model, we
implement local differential privacy protection on the com-
pressed model, reducing privacy budget and addressing privacy
leakage caused by inference attacks. Theoretical analysis and
experimental results validate that Fed-PEMC adheres to (ε, δ)-
differential privacy and exhibits a communication cost linked
to the model size. Experimental results show that compared
to baseline algorithms, Fed-PEMC excels in ensuring privacy,
maintaining model accuracy, and optimizing communication
efficiency, and Fed-PEMC outperforms the baseline solution
DP-Fed by 2.27 and 2.02 percentage points in testing accuracy
on the Mnist and Cifar10 datasets, respectively.

Index Terms—Federated learning, mobile edge computing, con-
sumer electronics, deep reinforcement learning, local differential
privacy.
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I. INTRODUCTION

AN EMERGING technology in the field is Mobile
Edge Computing (MEC), it has experienced a surge in

popularity in recent years. It has emerged as a solution to
the challenges encountered in traditional cloud computing,
including issues related to high latency, limited bandwidth, and
security concerns. The core concept of mobile edge computing
revolves around the deployment of computing resources,
encompassing processing power, data storage, and networking
equipment, in closer proximity to end-users, typically at the
network’s edge. The primary objective of MEC is to deliver
swifter response times and reduced latency, ultimately ensur-
ing a smooth and efficient user experience when accessing
the Internet. Zhou et al. improved the privacy and resilience
of mobile machine systems through distributed P2P federated
learning [1].

The inception of mobile edge computing can be attributed to
the widespread adoption of IoT devices, particularly within the
consumer electronics industry. Zhou et al. achieved excellent
results by applying federated reinforcement learning enhanced
with digital twins to mobile networks [2]. Consumer electron-
ics products, such as smartphones and smart home devices,
demand rapid data processing and real-time responsiveness,
prompting the need for data processing and analysis to occur in
closer proximity to users. In the consumer electronics industry,
federated learning is widely employed to enhance model
performance, enhance data privacy, and enable personalized
services. For instance, federated learning can be utilized to
enhance the user experience on smartphones. By conducting
local training on user devices, phones can learn personalized
inputs, preferences, and behavioral patterns without the need
to transmit sensitive data to a central server. This contributes to
providing more accurate predictions and suggestions, such as
autocomplete suggestions, voice recognition, and personalized
recommendations. It’s essential to emphasize that mobile edge
computing doesn’t replace cloud computing but rather comple-
ments it as a service. By harnessing the combined capabilities
of mobile edge computing and cloud computing technologies,
businesses can establish efficient and secure IT infrastructure
to augment the performance and user experience of consumer
electronics products. This paves the way for a wide array of
opportunities for the application of mobile edge computing in
the consumer electronics industry, enabling swifter and more
intelligent functionalities and services for smartphones, smart
home devices, smart wearables, and beyond.
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Federated learning stands as a potential paradigm in the
realm of artificial intelligence, offering efficient model training
and built-in privacy protection [3], [4], [5], [6]. Zhou et al.
applied technologies like federated learning to the Internet
of Things, making IoT smarter and more efficient [7], [8].
Federated learning involves two primary entities: the client
and the server. In federated learning, each client assumes
the responsibility of training a local model based on an
initial model and subsequently transmits the trained model
to the server for aggregation. The combined model is then
disseminated back to all participants as the new initial model.
This iterative process continues until convergence is attained. It
is widely acknowledged that federated learning is particularly
effective in addressing the challenges of data silos. This sug-
gests that the application of federated learning in the context
of mobile edge computing can efficiently tackle the issue of
distributed model computation. For instance, it has become
increasingly common for banks to collect users’ biometric
data through mobile IoT devices for identity verification
in banking services, such as facial recognition payments.
However, banks encounter the challenges of operating in
diverse industries, across multiple business scenarios, and
collaborating with various terminal manufacturers (e.g., educa-
tion, transportation, retail). Combining federated learning with
mobile edge computing effectively resolves various business
requirements. Specifically, the central computing node of the
bank (head office) distributes basic models and SDK devel-
opment toolkits to the branch banks (edge computing nodes).
Various IoT application terminals, such as facial recognition
payment POS machines, are developed using the SDK. Data
collected by mobile IoT devices is uploaded to the edge
computing nodes, where further training and optimization are
performed based on the original basic model to adapt to
specific usage scenarios. Simultaneously, the edge computing
nodes upload the training results to the central computing node
to optimize the basic model. Through this iterative process
involving the edge computing infrastructure and the federated
learning model, different business requirements are addressed,
and the model of the central computing node gradually
improves.

Federated learning is generally regarded as providing a
specific degree of privacy safeguarding, primarily due to the
fact that, in the federated learning process, individual client
data is inaccessible to the server, and there is no sharing
of data among the clients. However, with the continuous
advancement of artificial intelligence, hackers are becoming
increasingly sophisticated, employing intelligent and diverse
attack strategies. Of particular concern are inference attacks,
which pose a significant threat to data privacy by utilizing AI
techniques to reverse-engineer the model and infer sensitive
information [9]. This type of attack can result in data privacy
disclosure during the process of uploading the model from the
client to the server. Consequently, when attackers intercept the
uploaded local model, they may potentially gain access to the
client data embedded within that model. As a result, traditional
federated learning approaches may fall short in effectively
safeguarding the data privacy of clients.

Differential privacy, initially proposed by Dwork [10], is
founded on rigorous mathematical principles. It is based on
a method known as “randomized response,” which introduces
randomized noise to input or output data. This approach
ensures that the impact of a single record on the dataset,
when outputting information, always remains below a cer-
tain threshold. This prevents third parties from determining
whether a single record has been modified, added, or deleted
based on changes in the output. As a result, differential privacy
is considered the highest level of security among current
perturbation-based privacy protection methods. Differential
privacy can be categorized into two variants: local differ-
ential privacy and global differential privacy, depending on
where the noise is added. Given that both local differential
privacy training and privacy safeguarding processes can be
implemented on the client side, local differential privacy is
better suited for federated learning. In fact, to address the
issue of privacy leakage resulting from inference attacks,
local differential privacy technology has been integrated into
federated learning [11], [12], [13], [14]. While this effectively
resolves the problem of data privacy disclosure in federated
learning, it gives rise to another challenge, known as the
“privacy budget explosion.” This issue stems from the direct
correlation between the privacy budget in the differential
privacy mechanism and the growth of the model and the
number of communication rounds. This leads to a substantial
increase in the privacy budget, and it is important to note
that there exists an inverse relationship between the privacy
budget and model accuracy. Moreover, taking into account
the extensive quantity of parameters in neural networks,
adding noise to the model can significantly diminish model
accuracy.

Numerous existing studies have focused on enhancing the
privacy safeguarding of federated learning through the utiliza-
tion of local differential privacy. These studies aim to mitigate
the problem of a privacy budget surge by minimizing the size
of local models. For instance, Hu et al. [15] consider model
sparsity as a means of reducing the transmitted model’s size.
Ruixuan et al. [16] address the privacy budget concern by
sampling model parameters to shrink the model. These studies
address the trade-off between data privacy and accuracy in
federated differential privacy by randomly selecting model
parameters to drop. However, in federated learning, the impact
of parameters on model training accuracy varies; in other
words, some model parameters have a significant influence
on training accuracy, and randomly discarding these crucial
model parameters is not a viable solution. These algorithms
treat all model parameters equally when compressing them,
disregarding the differences in importance for each parameter.
This approach can significantly hinder model training accuracy
because it may lead to the removal of parameters that have a
substantial impact on model accuracy, ultimately reducing the
precision of the model.

Based on the above analysis, it is evident that addressing
the following issues is crucial for ensuring the reliability of
federated learning and safeguarding clients’ privacy in the field
of consumer electronics through mobile edge computing.
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1) Restricted Resources: The computational and storage
resources of devices in mobile edge computing are not
unlimited.

2) Privacy Disclosure: Federated learning suffers from
inference attacks that cause data privacy disclosure on
clients.

3) Privacy Budget Explosion: Introducing a differential
privacy mechanism to resist inference attacks can lead
to a privacy budget surge, primarily due to the large
number of model parameters involved.

To address the aforementioned challenges, this paper
introduces a novel federated learning algorithm, named
Fed-PEMC, for consumer electronics using mobile edge com-
puting. Fed-PEMC incorporates a deep reinforcement learning
algorithm(MCT) that takes into account the importance of
model parameters, MCT(Model Compression during Training)
achieves model compression in federated differential privacy
by discarding parameters with minimal impact on model
accuracy, addressing the trade-off between data privacy and
usability. It utilizes deep reinforcement learning to identify and
reduce model parameters that have minimal impact on model
accuracy. By striking a balance between model accuracy and
compression, Fed-PEMC effectively reduces privacy budgets.

Fed-PEMC has the potential for widespread applications
in electronic consumer devices, enhancing user experience,
strengthening data privacy protection, and reducing energy
consumption. It has significant advantages in the following
aspects. Electronic consumer devices typically contain users’
personal data, such as smartphones and smart home devices.
Federated learning allows model training to occur locally on
the device, eliminating the need to send data to a central server,
thus providing better user privacy protection. User data stays
on their devices, reducing the risk of data leaks and privacy
breaches(Privacy Protection). Federated learning enables on-
device model training, reducing the latency associated with
transmitting data to cloud servers and receiving results. This
is particularly beneficial for applications requiring real-time
feedback, such as smart homes, smartphones, and wearable
devices(Low Latency). Local on-device model training reduces
energy consumption associated with data transmission and
cloud computing. This is crucial for electronic consumer
devices that rely on battery power, as it can extend battery
life and lower energy costs(Energy Efficiency). Federated
learning allows electronic consumer devices to train models
based on users’ personalized needs, providing a better user
experience. For example, smartphones can optimize recom-
mendation algorithms based on users’ habits and interests,
and smart home devices can adapt to the needs of house-
hold members(Personalized Services). Since data doesn’t
need to be transmitted to cloud servers, federated learning
can reduce network congestion, improving data transmission
efficiency(Mitigation of Network Congestion). The principal
contributions of this paper are delineated as follows.
• To protect the data privacy of federated learning clients,

we incorporate a local differential privacy mechanism.
To mitigate the issue of privacy budget explosion arising
from an excessive number of model parameters, we only

introduce noise to the compressed model. Through rig-
orous theoretical analysis, we have demonstrated that the
proposed Fed-PEMC algorithm satisfies (ε, δ)-differential
privacy, where ε represents the allocated privacy budget
and δ denotes the confidence parameter.
To ensure the accuracy of the compressed model, we
have designed a deep reinforcement learning algorithm
called MCT, we employ MCT during the training pro-
cess to compress the model. Additionally, we utilize
customized label sampling techniques to accelerate the
training process. Uploading the compressed model to the
server further enhances the communication efficiency of
federated learning. Theoretical analysis reveals that the
communication cost of Fed-PEMC is estimated to be
o(R/2|w|), where R represents the number of federated
learning rounds, and |w| denotes the model size.

• We conducted comprehensive experiments using the
MNIST and CIFAR10 datasets to assess the efficiency
of the proposed Fed-PEMC algorithm. The experimental
results clearly demonstrate the superiority of Fed-PEMC
over baseline algorithms, namely FedAvg [17] and DP-
Fed [18], in terms of privacy protection, model accuracy,
and communication efficiency.

The structure of this paper is detailed as follows: Section II
covers the related work, Section III explains the system
model, Section IV outlines the implementation specifics of
the proposed Fed-PEMC, Section V presents the theoretical
analyses, Section VI delves into the performance evaluation,
and Section VII encapsulates the paper’s conclusion.

II. RELATED WORK

Privacy-enhanced federated learning has garnered substan-
tial attention from both academia and industry, particularly
within the realm of consumer electronics, resulting in a
multitude of publications in this domain. Existing research
predominantly centers on the implementation of privacy pro-
tection through either global differential privacy or local
differential privacy mechanisms, which involves introduc-
ing noise to client data during the federated learning
process.

Federated Learning based on Global Differential Privacy:
In [15], Hu et al. presented the sparse amplification privacy,
a novel federated learning framework that combines random
sparsification with gradient perturbation to bolster privacy
assurance. In [19], Chuanxin et al. introduced the Noisy-
FL algorithm, a Gaussian differential privacy-based federated
learning approach that offers user-level privacy protection.
Ruixuan et al. [16] utilized the privacy amplification in
the recently introduced shuffle model, incorporating differ-
ential privacy to optimize the utilization of the privacy
budget. Sun et al. [20] proposed a newly designed local
differential privacy mechanism for joint learning, addressing
privacy explosion and weight range disparities in various deep
learning model layers. This mechanism not only provides
robust privacy guarantees but also enhances training efficiency.
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TABLE I
THE SYMBOL LIST

Hu et al. [21] introduced a novel differential private fed-
erated learning scheme, Fed-SMP, which offers client-level
differential privacy safeguarding while preserving high model
accuracy. Hu et al. [22] devised an effective personalized
model learned from distributed user data, ensuring the differ-
ential privacy of client’s data. Gong et al. [23] improve privacy
and communication efficiency under a federated framework by
using unlabeled cross-domain public data for one-time offline
knowledge differentiation. Lu et al. [24] proposes a novel
asynchronous federated learning scheme for vehicle network
resource sharing, and further put forward a stochastic dis-
tributed update scheme to fortify federated learning security.

Federated Learning based on Local Differential Privacy:
In [25], Wang et al. introduced a local differential privacy-
based federated framework and provided theoretical assurance
for data privacy and model accuracy. Sun et al. [26] addressed
the trade-off between privacy assurance and model accuracy by
proposing a novel framework utilizing a noise-free differential
privacy mechanism in a federated model distillation setup,
effectively securing local data privacy with minimal impact on
model utility. In [27], Luping et al. proposed a new federated
scheme that can greatly lower the communication cost while
ensuring training convergence. In [28], Wu et al. adjusted the
gradient descent process by an adaptive approach for adjusting
learning rate to make the training process more efficient under
resource constraints. For the problem of utility inequity in
wireless IoT, Alvi et al. [29] made the training process more
efficient by using differential privacy to limit the aggregation
model leakage, so as to upgrade the quality of the aggregation
model. In [30], Jiang et al. proposed a novel multidimensional
selection method in federated learning to further ameliorate the
convergence process and performance of the model. In [31],
a new blended differential privacy is proposed for industrial
data processing with a federated edge framework to address
the issue of models subject to inference attacks. Yin et al. [32]
introduced an edge federated architecture that employs a
dynamic local differential privacy algorithm to resist internal
attacks on edge devices. In federated learning setting, the

subject granular privacy was introduced by Marathe et al. [33].
In such setting, a subject is referring to an individual whose
private information is embodied by several data items either
distributed across multiple federation users or confined within
a single federation user.

The comparison of mainstream privacy-enhanced feder-
ated learning algorithms is given in Table II. In [11], the
authors employ a three-plane framework and Local Differential
Privacy (LDP) to safeguard privacy in federated learning.
While LDP enhances privacy safeguarding in federated learn-
ing, it can have a negative impact on data availability. In [34],
the authors expedite the convergence process through local
custom training, significantly improving communication effi-
ciency. However, they do not address privacy security issues
in VEC. In [35], the authors devise a fairness-aware and time-
sensitive task allocation mechanism to resolve coordination
and scheduling problems in CEI systems, greatly enhancing
the responsiveness of CEI systems. Nevertheless, privacy
protection is not extensively considered in these works. Even
though they substantially enhance communication efficiency
in federated learning, and these algorithms can provide a
certain level of privacy safeguarding for the federated learning,
but these recent studies primarily have two main issues. On
the one hand, They cannot simultaneously address privacy,
communication efficiency, and data availability in all three
aspects. On the other hand, in federated differential privacy,
reducing model parameters randomly for model compression
has a significant negative impact on the final training model
accuracy. To solve these problems, the algorithm Fed-PEMC
is proposed in this paper, which solves the problem of privacy
budget explosion by implementing local differential privacy
protection for the compressed model.Fed-PEMC uses the MCT
algorithm to consider the impact of parameters on model
accuracy when deciding whether to discard a parameter, thus
achieving model compression while maintaining model train-
ing accuracy. This addresses the trade-off between resource
constraints and data accuracy and privacy. As far as I’m
aware, our approach is the first to study model compression in
federated differential privacy while considering model training
accuracy, and it resolves the issues mentioned above.

III. SYSTEM MODEL

In this section, we present a comprehensive system model
overview for the proposed Fed-PEMC algorithm, and discuss
potential threats that it may face. Additionally, we introduce
the concept and application of local differential privacy as a
means of privacy safeguarding in the scenario of our federated
learning.

Federated Learning Architecture: The system model of the
Fed-PEMC is shown in Fig. 1, which consists of two entities,
namely the client and server.

1) Client: In the context of consumer electronics, each
participating client, such as a smartphone or wearable
equipment, trains its local model by locally collected
data. To ensure efficient and privacy-preserving fed-
erated learning, each client compresses the uploaded
model before send it to the server.
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TABLE II
COMPARISON OF MAINSTREAM DIFFERENTIAL PRIVACY ENHANCED FEDERATED LEARNING ALGORITHMS

Fig. 1. System model of the proposed Fed-PEMC.

2) Server: The server acts as the central aggregator and
receives the compressed models from all the clients.
It then combines the models to create an aggregated
model and dispatches it back to each client. This iterative
process continues until the aggregated model achieves
the desired accuracy or the predetermined maximum
number of federated learning rounds is reached.

By incorporating compression techniques, federated learn-
ing in consumer electronics optimizes the transmission of
models, decreasing the communication cost and improving the

overall efficiency of the learning process. Additionally, privacy
safeguarding mechanisms, for example differential privacy, are
applied to guarantee the privacy of user data during the model
aggregation.

Security Threats: In this paper, we specifically concentrate
on privacy disclosure as the primary security threat. Protecting
user privacy data is crucial in the context of consumer
electronics. Therefore, we assume that all roles in the system
model, including both clients and servers, are honest and
curious. Under this assumption, clients are not expected to
engage in malicious behavior, such as launching poisoning
attacks to generate malicious models. Similarly, servers are
not expected to conduct malicious operations like attacking,
decrypting, or reverse engineering client-uploaded models.

IV. THE IMPLEMENTATION DETAILS OF

THE PROPOSED FED-PEMC

A. Overview of Fed-PEMC

The framework of the proposed Fed-PEMC is designed to
be applicable to consumer electronic products. It consists of
two main components: cloud update and local update. (see
Fig. 2).

Local Differential Privacy: Differential privacy (DP) was
proposed by Dwork to enhance data privacy by adding random
noise. It is extensively employed in various domains, such
as federated learning, to thwart inference attacks. However,
traditional DP requires a central trusted server, which may
not be practical due to increased noise on the server side. To
address this limitation, local differential privacy (LDP) was
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Fig. 2. The flow chart of the proposed Fed-PEMC.

introduced. LDP allows clients to add random perturbation to
their local models, protecting the privacy of the models. LDP
enables federated learning systems to maintain privacy without
relying on a central trusted server. By incorporating LDP into
federated learning, clients can contribute their local models
while preserving data privacy. This technique enhances privacy
protection and reduces the potential for privacy breaches
during model aggregation.

Cloud Update: In the cloud update phase, the server
randomly initializes the model weights. In the context of
consumer electronics, the server can represent a cloud-
based service or a centralized server. There exists n local
clients, which could be consumer electronic devices such
as smartphones, wearables, or IoT devices. In each round
of communication, the server stochastically selects k clients
(where k ≤ n) for local training. This selection process can be
performed based on factors such as device availability, battery
level, or network conditions. After collecting the trained local
models from the client-side, the server performs adaptive
updates and sends the final result to all client agents.

Local Update: In the local update phase, each client,
representing a consumer electronic device, utilizes a stochastic
gradient descent algorithm for r rounds of local training,
where r ≤ m. The number of local training rounds m,
can be determined based on factors for example equipment
capability, battery life, or user preferences. During the local
training, each client can leverage its own dataset, which
may include sensor readings, user behavior logs, or other
relevant data collected by the consumer electronic device. To
accelerate the training process, a customized label sampling
method can be employed to efficiently select training samples.
The client feeds the semi-trained local model to a machine
learning algorithm [36], [37], which helps to reduce the size
of the model while maintaining its accuracy. The training
and compression processes alternate until a balance between
model accuracy and size is achieved. Additionally, to enhance
privacy protection, random noise can be added to the trained

model before uploading it to the server. Finally, the selected
clients upload their trained local models to the server and
receive a new model as the initial model for the next round of
local training. This iterative process of cloud update and local
update enables collaborative model training while considering
privacy protection, computational efficiency, and resource-
constrained nature of consumer electronic devices.

In order to strengthen the privacy protection of clients,
local differential privacy is often employed. However, LDP
introduces the privacy budget explosion problem, which neces-
sitates the compression of models before adding noise. A
model compression algorithm called AMC has been proposed
in literature [38]. AMC utilizes deep reinforcement learning to
provide compression policies for different models. However,
AMC compresses the model after it has been trained, which
can potentially impact the accuracy of the local model and
subsequently the global model. To address this issue and
achieve higher compression ratios while maintaining better
model accuracy, we propose a novel compression method
called MCT. MCT compresses the model during the training
process, which allows us to reduce the privacy budget while
ensuring model accuracy. This approach enables us to strike
a tradeoff between privacy preservation and model accuracy.
Furthermore, uploading compressed models to the server
improves the efficiency of client-to-server communication.
Compressed models require less bandwidth for transmission,
reducing communication costs and improving overall system
efficiency. The pseudo-code of Fed-PEMC, is presented in
Algorithm 1.

B. MCT: Model Training During Compressing

1) Deep Reinforcement Learning Algorithm in MCT: MCT
uses the deep deterministic policy gradient algorithm (DDPG)
to train models while compressing them. The DDPG algorithm
is built upon AC framework, which includes the Actor and
Critic network, and each with its respective target network.

To illustrate the mode of training while compressing, we
first define the three basic elements for the DDPG algorithm
used in MCT, namely State, Action, and Reward.
• State: The local model considered in this paper is a con-

volutional neural network (CNN), and the MCT algorithm
will compress the CNN layer by layer. This means that
the state is defined based on the CNN layer. For each
layer l, we use 11 feature parameters to represent the
state as

Sl:
(
t, reduced, n, c, h, rest, w, stride, k, FLOPs[l],

a(l− 1)
)
, (1)

The kernel has a dimension of (n× c× k× k), while the
input size is (c×h×w). FLOPs[t] denotes the quantity of
floating-point operations in layer l. Additionally, reduced
is indicative of the total count of reduced FLOPs across
all prior layers, while rest signifies the remaining count
of stream points in subsequent layers. Moreover, a(l− 1)

refers to the action taken in the preceding layer, which
will be scaled within the range of [0, 1] before being
relayed to the agent.
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Algorithm 1 The Fed-PEMC Algorithm
Require: the dataset of client i Di, the number of local

client n, the local mini-batch size B, the number of local
epochs E, the learning rate η, and the global learning rate
ηg.

ClientUpdate:

1: Receive θ t+1 from server
2: for all each local client i ∈ k in parallel do
3: compute Pi(yj) according to Eq. (11)
4: sample B according to Pi(yj) from Di

5: for all each local epoch s = 0, 1, . . . , E do
6: for all each batch b ∈ B do
7: θ

t,s+1
i ← θ

t,s
i − ηgt,s

i
8: If(s%r == 0)

9: θ ′t,s+1
i ← MCT(θ

t,s+1
i )

10: end for
11: end for
12: upload θ ′ti after adding noise bt,s

i ∼ N(0, σ 2Id)

13: end for
ServerUpdate:

1: Initialize model θ0.
2: Send θ0 to all clients.
3: for all each round t = 1, 2, . . . , T do
4: randomly select k(k < n) local clients.
5: collect all models θ t from selected clients
6: perform adaptive updates according to formula (13)
7: send θ t+1 to all clients
8: end for

• Action: The model compression ratio of the model will be
taken as an action, and the action will be taken within the
continuous action space denoted as a ∈ (0, 1], allowing
for precise and fine-grained compression.

• Reward: Since in Fed-PEMC, we compress models as
much as possible while maintaining model accuracy, we
need to set reward functions that are sensitive to model
accuracy. We know that the error exhibits an inverse
relationship with either log(FLOPs) or log(#Param),
thereby we set the reward function as follows:

RFLOPs = −log(FLOPs)× Error, (2)

RParam = −log(#Param)× Error. (3)

MCT obtains the rational model compression ratio by
learning the optimal policy π from the actor network π(.|θπ ),
which take the state as the input and the action as the output,
i.e., π(s|θπ ) → a. To better explore actions, we use noise
generation and truncated normal distribution based on the
Ornstein-Uhlenbeck process for action generation, as

π ′(st) ∼ TN

(
π

(
s(t)|θt

μ, σ 2, 0, 1
))

, (4)

where the noise σ is initialized to 0.5 and decays exponentially
in the course of each iteration thereafter. Fig. 3 presents the
basic idea of the MCT algorithm.

Fig. 3. The model compression by MCT.

2) The Train Process of MCT: The sampling process of
the DDPG algorithm is to randomly select an action s(t)
based on noise and current strategy, calculate the reward value
and obtain a new state s(t + 1) after executing the action,
and finally store the experience in the experience pool. The
objective in training an actor and a critic network within deep
reinforcement learning is to maximize accumulated rewards
and minimize the error between the evaluation value and the
target value, respectively.

For the critic network, the loss function of which is defined
as follows:

L
(
θQ

) = 1

N

∑

t

(
y(t)− Q

(
aλ(t)|θQ, s(t)

))2

. (5)

The Q value in Eq. (5) is calculated by

Q(s(t), aλ(t)) = E

[
r
(
s(t), aλ(t)

)

+ γ Q

(
s(t + 1), π

(
s(t + 1)

))]
, (6)

While the target value y(t) is computed by

y(t) = γ Q′
(

s(t + 1), π ′
(
s(t + 1)|θπ ′)|θQ′

)
+ r(t), (7)

where the reward value can be computed based on the
operational state s(t) and the action a(t), and Q′ is computed
by the critic target network built on the next state s(t + 1).
For the actor network, the loss function of which is defined
as follows:

	θπ J ≈π

[
	a Q

(
s, a|θQ

)∣∣
s=s(t),a=π

(
s(t)

) 	θπ π
(
s|θπ

)∣∣
s=s(t)

]
(8)

By softly updating the parameters in the target network, the
output tends to be more stable. This makes using the target
network to compute the target value naturally more steady,
thereby ensuring a more stable learning process for the critic
network. Thereby, the following equations are used for target
network update:

θQ′ ← (1− τ)θQ′ + τθQ, (9)

θπ ′ ← (1− τ)θπ ′ + τθπ . (10)

In general, the DDPG Agent generally takes the embedding
state s(t) of the layer L(t) from the environment and generates
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a sparse ratio as an action. It employs a designated compres-
sion algorithm (channel pruning) to compress the underlying
layer at a rounded feasible fraction. The agent then progresses
to the subsequent layer L(t+1) and receives the state s(t+1).
Upon finishing the final layer L(T), the accuracy of the reward
is assessed on the validation set and conveyed back to the
agent.

C. Customized Label Sampling For Training Accelerating

Using deep reinforcement learning to compress local models
in federated learning takes a certain amount of time, which
may lead to a long period of training time for Fed-PEMC.
How to speed up the training process of the Fed-PEMC is
an open problem. As shown in [39] the deep neural networks
often prioritize learning the majority class while neglecting the
minority class. For example, the majority class in the sample
facilitates the overall training, the accuracy of the training
model can be impacted by the data of the minority class in
the sample. This suggests that we can solve the problem of
long training time by adjusting the sampling probability. That
is, for most types of data in the sample, we give a relatively
large sampling probability, while for a few types of data in
the sample, we give a relatively small sampling probability.
Combing the customized label sampling proposed by Zhang
et al. [40], we formulate the sampling probability of class label
yj in client k by

Pk
(
yj

) = n
yj
k∑N

i=1 n
yj
k

, (11)

where N is the total count of tag categories for client k.
In line 20 of Algorithm 1, add noise bt,s

i ∼ N(0, σ 2Id) to
the locally trained model before dispatching it to the server.

D. Server-Side Adaptive Updates

Considering that compressing the federation local model by
deep reinforcement learning slows down the whole process of
federation training, we utilize customized label sampling to
accelerate the local training of clients in the edge computing
network. The Adam algorithm is an extension of the stochastic
gradient algorithm, where the learning rate is kept constant,
and the Adam algorithm optimizes the training process by
continuously and adaptively changing the learning rate dur-
ing the training process. In edge computing networks, the
resources of local training devices or clients are very limited,
and the clients do not always participate in local training.
Therefore, it is not a good choice for the local client to
optimize the training process by Adam’s algorithm. Inspired
by [41] and [15], we consider the server side to optimize the
training process by using Adam’s algorithm. The server-side
retains two momentum vectors u, m ∈ Rd, which are updated
once per round. Specifically, in round t, subsequent to the
local training of the client agents, agent i ∈ W sends its model
update �θt to the server, which then updates the aggregation
model by the following algorithm:

⎧
⎨

⎩

mt = α1mt−1 + (1− α1)G,

ut = α2ut−1 + (1− α2)G2,

θt+1 = θt − ηgmt/
(√

ut + λ
)
.

(12)

where α1 and α2 are the momentum parameters, G =∑
i∈W �t

i/|W|, ηg is the global learning rate, and λ is the
adaptive degree parameter.

V. THEORETICAL ANALYSIS

A. Privacy Analysis

In this section, we’ll discuss the privacy guarantees of Fed-
PEMC. The assumptions and lemmas necessary for the privacy
analysis are presented first.

Assumption 1 (Bounded Gradient [15]): The loss function
l(i)(x, z) has G/

√
d-bounded gradients, i.e., for any data sample

z from Di, we get |[∇li(x, z)]j| ≤ G/
√

d for all j ∈ [d], i ∈ [n]
and x ∈ Rd.

Lemma 1 (RDP Composition [42]): If M1 satisfies (α, ρ1)−
RDP and M2 satisfies (α, ρ2) − RDP, then their composition
M1 ◦M2 satisfies (α, ρ1 + ρ2)− RDP.

Lemma 2 (Gaussian Mechanism [42]): Let h:D→ Rd be a
vector-valued function over datasets. The Gaussian mechanism
M = h(D)+b with b ∼ N(0, σ 2Id) satisfies(α, αφ2(h)/2σ 2)−
RDP, where φ(h) is the L2 sensitivity of h defined by φ(h) =
supD,D′ ||h(D) − h(D′)||2 with D, D′ being two neighboring
datasets in D.

Lemma 3 (RDP to DP conversion [43]): If M satisfies
(α, ρ)− RDP, then it also satisfies(ρ + log(1/δ)

α−1 , δ)− DP.
Lemma 4 (RDP for Subsampling Mechanism [43], [44]):

For a Gaussian mechanism M and any m-datapoints dataset D,
we define M ◦ SUBSAMPLE as applying M on the sub-
sampled dataset as input, where B datapoints are subsampled
without replacement from the dataset with q = B/m as the
sampling ratio.

If M satisfies(α, ρ(α)) − RDP concerning the subsampled
dataset for all integers α ≥ 2, then the new randomized
mechanism M ◦ SUBSAMPLE satisfies (α, ρ,(α)) − RDP
concerning D, where

ρ′(α) ≤ 1

α − 1
log(1+ q2

(
α

2

)
min{4(eρ(2) − 1)}

+
α∑

j=3

q2
(

α

j

)
2e(j−1)ρ(j)) (13)

If σ ′2 = σ 2/φ2(h) and α ≤ (2/3)σ 2log(1/qα(1 + σ ′2)) + 1,
then M ◦ SUBSAMPLE satisfies (α, 3.5q2φ2(h)α/σ 2)−RDP.

Theorem 1 (Privacy Guarantee): Assuming small batches
ξ

t,s
i are sampled each iteration without replacement, we denote

the data sampling rate by q = B/m, We let τ represent the
number of local iterations, Ii represent the number of rounds
the agent i has participated in, ri,t represent the compression
rate of agent i at tth round iteration, and R denote the average
compression rate over T federated learning rounds. Under
Assumption 1, if σ ′2 = σ 2B2/2RG2 ≥ 0.7, then Fed-PEMC
complishes (ε, δ)− DP for client i, where

ε = log(1/δ)

α − 1
+ 7q2IiταRG2

B2σ 2
(14)

for any δ ∈ (0, 1) and α ≤ (2/3)σ 2log(1/qα(1+ σ ′2))+ 1.
Proof: Our differential privacy mechanism for Fed-PEMC

leverages the privacy guarantee of Gaussian noise, which is
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amplified by the compression model. To assess end-to-end
privacy, we begin by analyzing the sensitivity of Algorithm 1
at line 9. We denote the model gradient and added Gaussian
noise of agent i after the tth compression round as gt,s

i and bt,s
i ,

respectively. We first analyze the sensitivity of gt,s
i and then

calculate the privacy guarantee after adding bt,s
i for agent i,

assuming that any two neighboring data sets ξ
t,s
i and ξ ′t,si have

the same size B but differ in one data sample (e.g., z ∈ ξ
t,s
i and

z′ ∈ ξ ′t,si ). Since the model parameters are compressed by deep
reinforcement learning in Fed-PEMC, the compression rate
of each agent varies at different iteration rounds. Therefore,
the L2 sensitivity can be expressed as φ2

i,t = max||gt,s
i − [ 	

fi(θ
t,s
i , ε

t,s
i )]||2 = max||(1/B)[	 l(θ t,s

i , z)−	l(θ t,s
i , z′)]||2 and

under Assumption 1 with 2ri,tG2/B2 as a bound. We find that
the sensitivity of gt,s

i is proportional to the compression ratio,
which reduces the privacy loss according to Lemma 2.

We then proceed to prove the end-to-end differential pri-
vacy guarantee for Fed-PEMC in Theorem 1. By leveraging
Lemma 2, we can determine that a small batch ξ

t,s
i of sub-

sampling satisfies (α, α = ri,tG2/B2σ 2) − RDP in each local
iteration of Algorithm 1. Furthermore, Lemma 4 guarantees
that M◦ SUBSAMPLE satisfies (α, 3.5q2φ2(h)α/σ 2) − RDP
by subsampling. Finally, by applying Lemma 1 to Lemma 4,
we derive Theorem 1.

Theorem 1 concludes that, for a constant value of δ,
ε is determined through numerical computation by seeking
the optimal α that minimizes ε.It’s notable that the noise
magnitude σ scales with R, indicating that reducing the
compression ratio below 1 could decrease the Gaussian noise
amplitude and enhance model accuracy.

B. Communication Cost

In this section, we examine the communication expense of
the proposed Fed-PEMC.

Theorem 2 (Communication Cost): Assume that the num-
ber of federated learning global training rounds is T rounds.
The compression rate of each round is different because the
local client compresses the model by the AMCT algorithm
individually. Let the compression rate of the local model in
round i as Ci = |w||wi| , where w is the model before compression
and wi is the model after compression. The communication
cost of Fed-PEMC is o(T/C|w|) for any agent i.

Proof: First we give the total amount of communication data
for the federated average algorithm as

V(FedAvg) = T|w|. (15)

Thus, the total amount of communication data for the proposed
Fed-PEMC can be calculated by

V(Fed−PEMC) =
T∑

i=1

|wi| =
T∑

i=1

1

Ci
|w|. (16)

Let C denote the average compression rate over the entire
training process, then we have

∑T
i=1

1
Ci
|w| = T

C |w|, then
Theorem 3 is proved. Since the communication cost of Fed-
PEMC is o(T/C|w|) for any agent i. it can be inferred that its
computational complexity is inversely proportional to C. The
larger the value of C, the smaller its computational complexity.

Without using the MCT algorithm, the communication over-
head for the baseline solution is o(T/|w|), which means that
Fed-PEMC’s communication overhead is 1/C of the baseline
solution, our approach significantly reduces communication
overhead.

C. Convergence Analysis

In this subsection, we’re going to analyze the convergence
of the Fed-PEMC scheme. Our primary analytical conclusion
is that Fed-PEMC has a O( 1

T ) convergence rate, which ensures
that it converges to the global optimum.

For the convenience of illustration, we assume that the local
data size for all clients is equal, i.e., Di = Dj for any i, j ∈ K.
We select N clients to train locally for E rounds per iteration.
Below, we present three assumptions that support the proof of
our convergence analysis.

1) L-smooth [45]: ∀x, y, F(y) ≤ F(x) + (y − x)T 	 F(x) +
L
2 ||y− x||2;

2) U-strongly convex [45]: ∀x, y, F(y) >= F(x)+(y−x)T	
F(x)+ μ

2 ||y− x||2;
3) Bounded gradient and bounded variance of gradi-

ent [45]: E[|| 	F(xk[t], ξ k[t])−	F(xk[t])||2] ≤ σ 2 and
E[|| 	 F(xk[t], ξ k[t])||] ≤ G2.

Theorem 3 (Convergence Analysis): If the three afore-
mentioned assumptions hold, we define K = L/μ, γ =
max{8K, E}, and the learning rate η = 2

μ(γ+t) . If the error
threshold in Fed-PEMC is as follows:

eth[t] <= η2
t =

4

μ2(γ + t)2

∼ O

(
1

t2

)
, E

[
ei] = 0 ∀i ∈ K. (17)

Then all local clients participating in training in Fed-PEMC
satisfy:

E
[
F(y[T])− F

(
y∗

)]

≤ K

γ + T − 1

(
2B

μ
+ μγ

2

[
||y[1]− y∗||2

])
(18)

where

B =
N∑

i=1

σ 2
i

N2
+ 6L� + 8(E − 1)G2 + E

[
||eth||2

]
. (19)

Proof: By the L-smoothness assumption, we can derive the
following inequality:

E
[
F(y[t])

]− F
(
y∗

) ≤ L

2
E
[
||y[t]− y∗||2

]
(20)

In the following section, we will utilize the results presented
in [46]. However, it’s important to note that, in Fed-PEMC,
the uplink errors from different users are not independent. To
address this issue, we constrain the error term of the uplink
as follows:

E
[
||y∗[t]− y[t]||2

]
= E

[
||e[t]||2

]

= 1

N2
E

[

||
N∑

i=1

ei[t]||2
]

≤ eth[t]. (21)
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Using the result in [46] we can derive the following inequality:

E
[
||y[t + 1]− y∗||2

]
≤ (1− ηtμ)E

[
||y[t]− y∗||2

]
+ eth[t]

+ η2
t

[
N∑

i=1

σ 2
i

N2
+ 6L� + 8(E − 1)G2

]

.

(22)

We denote �t = E[||y[t+1]−y∗||2], according to equation(18)
and (19), the error threshold of Fed-PEMC eth[t] ≤ η2

t , we

have �t+1 ≤ (1−ηtμ)�t+η2
t B, where B =∑N

i=1
σ 2

i
N2 +6L�+

8(E−1)G2+E[||eth||2]. We denote the learning rate ηt = β
t+γ

,

where β ≥ 1
μ

, γ ≥ 0, η1 ≤ min{1/μ, 1/4L} = 1/4L, ηt ≤
2ηt+E. Then there is �t ≤ v

γ+t , where v = max{ β2B
βμ−1 , (γ +

1)�0} is as follows:

�t+1 ≤ (1− ηtμ)�t + η2
t B

=
(

1− βμ

t + γ

)
v

t + γ
+ β2B

(t + γ )2

≤ v

t + γ + 1
. (23)

We substitute �t into the above formula and let t = T , then
Theorem 3 is proved.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithm Fed-PEMC. The experiment was conducted on
a Windows 10 computer with a 12th generation Core i7
processor with a single-core frequency of up to 4.70 GHz and
an RTX3060 GPU.

A. Experiment Setup

We present a comparative analysis between the proposed
algorithm, Fed-PEMC, and the baseline algorithms DP-Fed,
Fed-SPA, and Fed-Avg, and we will experimentally compare
the latest federated learning algorithms QMAMCC-FL [47]
and FLIDS-BSAFSC [48] with the algorithm we propose.
DP-Fed is an algorithm that augments the Fed-Avg approach
by introducing Gaussian noise to enhance privacy protec-
tion. To assess the advantages of Fed-PEMC, we conduct a
performance evaluation of these algorithms, focusing on three
key aspects: training loss, accuracy, and the balance between
privacy budget and model accuracy. It’s worth noting that
to better illustrate the effectiveness of our solution in an e-
consumer scenario, we conducted experimental simulations
of Fed-PEMC on a PUSH dataset associated with an e-
consumer device. The PUSH dataset is collected from the
PUSH wearable device worn on the forearm to measure
athlete movement. It comprises 49194 sets of 449260 repeated
exercise repetitions from 1441 male athletes and 307 female
athletes.

The performance evaluation is performed using Python
based on the dataset MNIST, which consists of 10 sets of
28× 28 handwritten digital image, and the dataset CIFAR10,
which is composed of 10 sets of 32 × 32 images. For the
MNIST dataset, we adopted a CNN model that incorporates

Fig. 4. The accuracy of Fed-PEMC, Fed-SPA, Fed-Avg, DP-Fed, QMAMCC-
FL and FLIDS-BSAFSC on the MNIST dataset for 50 rounds.

two 5 × 5 convolutional layers—initially, with 10 filters in
the first convolutional layer and 20 filters in the second.
Each convolutional layer is succeeded by a 2 × 2 pooling
layer and Relu activation. Additionally, a dropout layer was
implemented to prevent overfitting. The model also includes
two fully connected layers: the first has an input of 320
dimensions and an output of 50 dimensions, while the second
layer has an input of 50 dimensions and an output of 10 dimen-
sions. We employed a CNN model for the CIFAR10 dataset,
consisting of two convolutional layers sized at 5×5 (the initial
convolutional layer containing 6 filters and the subsequent
layer with 16 filters), each paired with a 2 × 2 pooling layer
and Relu activation. Additionally, three fully-connected layers
(the first fully-connected layer with 16 × 5 × 5 dimensional
inputs and 120 dimensional outputs, the second one with 120
dimensional inputs and 84 dimensional outputs, and the last
one with 84 dimensional inputs and 10-dimensional output)
were utilized. For the MNIST dataset, each client is provided
with a training set consisting of 600 images and labels, and a
test set containing 100 images and labels. For the CIFAR10
dataset, every client is allocated a training set comprising
500 images and labels, along with a test set of 100 images
and labels. In each training round, a random selection of 10
out of the total 100 clients is made. These selected clients
proceed to undertake local training for 5 rounds, followed by
a global training phase spanning 50 rounds. Both the Fed-
PEMC and the baseline DP-Fed implementations incorporate
local differential privacy measures by introducing Gaussian
noise. Specifically, they initialize this noise with values of 0.6
for ε and 0.0001 for δ.

B. Experiment Result

Fig. 4 and Fig. 5 illustrate the training accuracy and loss of
the following algorithms: Fed-PEMC, Fed-SPA, QMAMCC-
FL, FLIDS-BSAFSC, Fed-Avg, and DP-Fed. The overall
testing accuracy and loss performance of our algorithm on the
MNIST dataset are superior to the latest federated learning
algorithms QMAMCC-FL and FLIDS-BSAFSC, these figures
depict the performance of these algorithms over 50 rounds
of training on the MNIST dataset. Regarding training accu-
racy, our proposed algorithm, Fed-PEMC, demonstrates higher
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Fig. 5. The loss of Fed-PEMC, Fed-SPA, Fed-Avg, DP-Fed, QMAMCC-FL
and FLIDS-BSAFSC on the MNIST dataset for 50 rounds.

Fig. 6. The accuracy and of Fed-PEMC, Fed-SPA, Fed-Avg, DP-Fed,
QMAMCC-FL and FLIDS-BSAFSC on the CIFAR10 dataset for 50 rounds.

Fig. 7. The loss of Fed-PEMC, Fed-SPA, Fed-Avg, DP-Fed, QMAMCC-FL
and FLIDS-BSAFSC on the CIFAR10 dataset for 50 rounds.

accuracy compared to the DP-Fed scheme. Furthermore, Fed-
PEMC exhibits a more stable accuracy throughout the training
process. However, the Fed-Avg scheme achieves higher accu-
racy than both Fed-PEMC and DP-Fed schemes since Fed-Avg
does not incorporate privacy protection by adding noise. In
terms of training losses, we observe that the losses of Fed-
PEMC and Fed-Avg are comparable, with both algorithms
achieving lower losses than DP-Fed throughout the entire
training process.

Fig. 8. The accuracy and of Fed-PEMC on the PUSH dataset for 50 rounds.

Fig. 9. The loss of Fed-PEMC on the PUSH dataset for 50 rounds.

Fig. 6 and Fig. 7 present the accuracy and loss of algorithms
Fed-PEMC, Fed-SPA, QMAMCC-FL, FLIDS-BSAFSC, Fed-
Avg, and DP-Fed after 50 rounds of training on the Cifar
10 dataset. The overall testing accuracy and loss performance
of our algorithm on the MNIST dataset are superior to
the latest federated learning algorithms QMAMCC-FL and
FLIDS-BSAFSC. In the training accuracy, it can be seen that
due to the absence of noise, the accuracy of Fed-Avg is
higher than that of the algorithms Fed-PEMC and DP-Fed,
while the accuracy of the proposed Fed-PEMFC is higher
than that of DP-Fed. In the training loss, the loss of Fed-
PEMC is slightly higher than that of Fed-Avg. However
after 20 rounds of training, the loss values of both are very
similar. We also can observe that the loss value of Fed-
PEMC is far smaller than that of DP-Fed. Especially, at the
10th round of training, the difference is greatest. Fig. 8 and
Fig. 9 demonstrates the testing accuracy and loss performance
of the Fed-PEMC solution on the PUSH dataset, indicating
its performance is comparable, and in some cases, even
superior to that on the MNIST dataset. This highlights the
effectiveness of our solution in the context of e-consumer
devices.

Fig. 10 and Fig. 11 demonstrate the performance of Fed-
PEMC, Fed-SPA and DP-Fed in terms of the tradeoff between
privacy and accuracy on MNIST and Cifar 10 datasets,
respectively. According to the tradeoff on the MNIST dataset,
when the privacy budget ranges from 0.2 to 1, the training
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TABLE III
SUMMARY OF RESULTS ON MNIST AND CIFAR10 DATASET

Fig. 10. The performance of privacy and accuracy tradeoff for Fed-PEMC,
Fed-SPA and DP-Fed on MNIST(The horizontal coordinate is the privacy
budget ε).

Fig. 11. The performance of privacy and accuracy tradeoff for Fed-PEMC,
Fed-SPA and DP-Fed on CIFAR10(The horizontal coordinate is the privacy
budget ε).

accuracy of the Fed-PEMC is higher than that of the DP-Fed.
Especially, when the privacy budget values ranges from 0.2 to
0.3, the difference is greatest, with the accuracy of the Fed-
PEMC being 8% higher than that of the DP-Fed. According
to the tradeoff on the CIFAR10 dataset, DP-Fed has higher
accuracy than Fed-PEMC with the privacy budget ranges from
0.2 to 0.35, while Fed-PEMC has higher accuracy than DP-Fed
when the privacy budget varies from 0.35 to 1. In particular,
when the privacy budget is set to 1, the difference between
these two is greatest, and the accuracy of Fed-PEMC is about
3% higher than that of DP-Fed.

Table II shows the number of different round models
and training accuracy of Fed-PEMC, DP-Fed and Fed-SPA
in mnist and cifar datasets, our Fed-PEMC scheme has a
compression rate similar to 50% sparsity rate of Fed-SPA,
and our scheme outperforms Fed-SPA and DP-Fed in terms
of accuracy on both MNIST and CIFAR datasets. Table III
shows the training accuracy of Fed-PEMC, Fed-SPA, and DP-
Fed for different privacy budgets on Mnist and Cifar, the

TABLE IV
RELATIONSHIP BETWEEN TESTING ACCURACY AND PRIVACY

BUDGET ON MNIST AND CIFAR10 DATASET

TABLE V
TRAINING ACCURACY OF SCHEME FED-PEMC

UNDER DIFFERENT PRIVACY BUDGET

training accuracy of DP-Fed, Fed-PEMC, and Fed-SPA on
the MNIST and CIFAR datasets increases with an increase
in privacy budget, and the training accuracy of Fed-PEMC is
better than DP-Fed and Fed-SPA throughout the process of
varying privacy budget.

C. Ablation experiment

In this section, we conduct ablation experiments on our
Fed-PEMC scheme to demonstrate the effectiveness of the
customized label sampling and server-side adaptive update,
as well as to showcase how these two components further
optimize our scheme.

The results of the ablation experiments are shown in
Table IV, the entries NoA-Fed-PEMC and NoB-Fed-PEMC
in Table IV respectively denote the Fed-PEMC schemes
without customized label sampling and without server-side
adaptive updates. Table IV shows the training accuracy of
Fed-PEMC, NoA-Fed-PEMC, and NoB-Fed-PEMC on the
MNIST and CIFAR datasets under different privacy budgets.
It can be observed that Fed-PEMC has a higher training
accuracy than the other two schemes throughout the vary-
ing privacy budget process. Scheme NoB-Fed-PEMC has a
generally higher training accuracy than NoA-Fed-PEMC on
both MNIST and CIFAR datasets across the entire experiment,
indicating that custom class-level sampling has a greater
impact on training optimization than server-side adaptive
updates.
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VII. CONCLUSION

The combination of federated learning and mobile edge
computing provides personalized intelligent features and
services for consumer electronics products. However, tradi-
tional federated learning is vulnerable to attacks and privacy
breaches, and mobile edge computing faces challenges due
to limited resources. To solve these issues, we introduce
a federated learning algorithm called Fed-PEMC, which
is based on privacy enhancement and model compression.
This algorithm protects client privacy, ensures training accu-
racy, and improves communication efficiency. Specifically,
in federated learning, we apply deep reinforcement learning
algorithms to compress the model while maintaining accu-
racy, and accelerate local training through customized label
sampling. By adding noise to the compressed model and
dispatching it to the server, we solve the issue of privacy
budget explosion and significantly improve communication
efficiency between clients and servers. The theoretical analysis
proves that Fed-PEMC satisfies (ε, δ)-differential privacy, and
the communication overhead is only related to the model’s
size. Experimental results present that the proposed algorithm
outperforms baseline algorithms in aspects of privacy protec-
tion, model accuracy, and communication efficiency. In future
research, we will explore the enhancement of privacy protec-
tion and data availability in the context of federated differential
privacy frameworks for consumer electronics, considering the
scenario where client data is not independently and identically
distributed (non-IID).
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